OCR MEI Maths FP1

Mark Scheme Pack

2005-2014

Qu	Answer	Mark	Comment
4	$\begin{aligned} & \sum_{r=1}^{n} r^{2}(r+2)=\sum_{r=1}^{n} r^{3}+2 \sum_{r=1}^{n} r^{2} \\ & =\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{3} n(n+1)(2 n+1) \\ & =\frac{1}{12} n(n+1)[3 n(n+1)+4(2 n+1)] \\ & =\frac{1}{12} n(n+1)\left(3 n^{2}+11 n+4\right) \end{aligned}$ i.s.w.	$\begin{gathered} \hline \mathrm{M} 1, \mathrm{~A} 1 \\ \mathrm{M} 1, \mathrm{~A} 1 \\ \text { M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Separate sums Use of formulae. Follow through from incorrect expansion in line 1. Factorising
5	$\begin{aligned} & w=x+1 \Rightarrow x=w-1 \\ & \Rightarrow(w-1)^{3}+2(w-1)^{2}+(w-1)-3=0 \\ & \Rightarrow w^{3}-3 w^{2}+3 w-1+2 w^{2}-4 w+2+w-1-3=0 \\ & \Rightarrow w^{3}-w^{2}-3=0 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1, } \\ \text { A1,A1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	Substitution. For substitution $w=x-1$ give B0 but then follow through. Substitute into cubic Expansion Simplifying

8(i)	$\alpha+\beta=1+j$	B1	
	$\begin{aligned} & \alpha \beta=(2-j)(-1+2 j) \\ & =-2+4 j+j-2 j^{2} \\ & =5 j \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
	$\begin{aligned} & \frac{\alpha}{\beta}=\frac{(2-\mathrm{j})(-1-2 \mathrm{j})}{(-1+2 \mathrm{j})(-1-2 \mathrm{j})}=\frac{-2-4 \mathrm{j}+\mathrm{j}+2 \mathrm{j}^{2}}{5} \\ & =\frac{-4}{5}-\frac{3}{5} \mathrm{j} \text { or } \frac{-4-3 \mathrm{j}}{5} \end{aligned}$	M1, A1 A1 [6]	Use of conjugate of denominator
8(ii)	$\begin{aligned} & r=\|\alpha\|=\sqrt{5} \\ & \theta=\arg \alpha=-0.464 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Accept degree equivalent (-26.6°)
8(iii)	Circle, centre $2-\mathrm{j}$, radius 2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Argand diagram with circle. 1 mark for centre, one mark for radius.
8(iv)	Half line from $-1+2 \mathrm{j}$, making an angle of $\frac{\pi}{4}$ to the positive real axis.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Argand diagram with half line. One mark for angle.

Qu	Answer	Mark	Comment
Section B (continued)			
9(i)	$\mathbf{M}^{2}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)=\mathbf{I}$	B1 [1]	.
9(ii)	\mathbf{M}^{2} gives the identity because a reflection, followed by a second reflection in the same mirror line will get you back where you started OR reflection matrices are self-inverse.	E1 [1]	
9(iii)	$\left(\begin{array}{cc} 0.8 & 0.6 \\ 0.8 & -0.6 \end{array}\right)\binom{x}{y}=\binom{x}{y}$		
	$\begin{aligned} & \Rightarrow 0.8 x+0.6 y=x \\ & \text { and } 0.6 x-0.8 y=y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Give both marks for either equation or for a correct geometrical argument
	Both of these lead to $y=\frac{1}{3} x$ as the equation of the mirror line.	A1 [3]	
9(iv)	Rotation, centre origin, 36.9° anticlockwise.	B1, B1 [2]	One for rotation and centre, one for angle and sense. Accept 323.1° clockwise or radian equivalents (0.644 or 5.64).
9(v)			
	$\mathbf{M P}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \\ \text { B1 } \end{gathered}$	
9(vi)	$y=0$	[1]	

Section A			
1(i) 1(ii)	$\begin{aligned} & \mathbf{A}^{-1}=\frac{1}{5}\left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{cc} 2 & -3 \\ -1 & 4 \end{array}\right)\binom{5}{-4}=\binom{x}{y}=\frac{1}{5}\binom{22}{-21} \\ & \Rightarrow x=\frac{22}{5}, y=\frac{-21}{5} \end{aligned}$	M1 A1 M1 A1(ft) A1 (ft) [5]	Dividing by determinant Pre-multiplying by their inverse Follow through use of their inverse No marks for solving without using inverse matrix
2	$4-j, 4+j$ $\begin{aligned} & \sqrt{17}(\cos 0.245+\mathrm{j} \sin 0.245) \\ & \sqrt{17}(\cos 0.245-\mathrm{j} \sin 0.245) \end{aligned}$	M1 A1 [2] M1 F1, F1 [3]	Use of quadratic formula Both roots correct Attempt to find modulus and argument One mark for each root Accept (r, θ) form Allow any correct arguments in radians or degrees, including negatives: $6.04,14.0^{\circ}, 346^{\circ}$. Accuracy at least 2s.f. S.C. F1 for consistent use of their incorrect modulus or argument (not both, F0)
3	$\begin{aligned} & \left(\begin{array}{cc} 3 & -1 \\ 2 & 0 \end{array}\right)\binom{x}{y}=\binom{x}{y} \Rightarrow x=3 x-y, y=2 x \\ & \Rightarrow y=2 x \end{aligned}$	M1 A1 A1 [3]	M1 for $\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)\binom{x}{y}=\binom{x}{y}$ (allow if implied) $\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)\binom{k}{m k}=\binom{K}{m K}$ can lead to full marks if correctly used. Lose second A1 if answer includes two lines
4(i) 4(ii) 4(iii)	$\begin{aligned} & \alpha+\beta=2, \alpha \beta=4 \\ & \alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=4-8=-4 \end{aligned}$ Sum of roots $=2 \alpha+2 \beta=2(\alpha+\beta)=4$	B1 M1A1 (ft) M1	Both Accept method involving calculation of roots Or substitution method, or method

	Product of roots $=2 \alpha \times 2 \beta=4 \alpha \beta=16$ $x^{2}-4 x+16=0$	A1 (ft) [5]	Thvolving calculation of roots The $=0$, or equivalent, is necessary for final A1

Qu	Answer	Mark	Comment
Section A (continued)			
6	For $k=1,1^{3}=1$ and $\frac{1}{4} 1^{2}(1+1)^{2}=1$, so true for $k=1$ Assume true for $n=k$ Next term is $(k+1)^{3}$ Add to both sides $\begin{aligned} & \mathrm{RHS}=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\ & =\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right] \\ & =\frac{1}{4}(k+1)^{2}(k+2)^{2} \\ & =\frac{1}{4}(k+1)^{2}((k+1)+1)^{2} \end{aligned}$ But this is the given result with $(k+1)$ replacing k. Therefore if it is true for k it is true for $(k+1)$. Since it is true for $k=1$ it is true for $k=1,2,3, \ldots$.	B1 B1 B1 M1 M1 A1 E1 [7]	Assuming true for $k,(k+1)^{\text {th }}$ term for alternative statement, give this mark if whole argument logically correct Add to both sides Factor of $(k+1)^{2}$ Allow alternative correct methods For fully convincing algebra leading to true for $k \Rightarrow$ true for k $+1$ Accept 'Therefore true by induction' only if previous A1 awarded S.C. Give E1 if convincing explanation of induction following acknowledgement of earlier error
7	$\begin{aligned} & 3 \sum r^{2}-3 \sum r \\ & =3 \times \frac{1}{6} n(n+1)(2 n+1)-3 \times \frac{1}{2} n(n+1) \\ & =\frac{1}{2} n(n+1)[(2 n+1)-3] \\ & =\frac{1}{2} n(n+1)(2 n-2) \\ & =n(n+1)(n-1) \end{aligned}$	M1,A 1 M1,A 1 M1 A1 c.a.o. [6]	Separate sums Use of formulae Attempt to factorise, only if earlier M marks awarded Must be fully factorised

9(i)	$\begin{aligned} & 2-\mathrm{j} \\ & 2 \mathrm{j} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	
9(iii)	$\begin{aligned} & (x-2-\mathrm{j})(x-2+\mathrm{j})(x+2 \mathrm{j})(x-2 \mathrm{j}) \\ & =\left(x^{2}-4 x+5\right)\left(x^{2}+4\right) \\ & =x^{4}-4 x^{3}+9 x^{2}-16 x+20 \end{aligned}$ So $\mathrm{A}=-4, \mathrm{~B}=9, \mathrm{C}=-16$ and $\mathrm{D}=20$	$\begin{gathered} \text { M1, } \\ \text { M1 } \\ \text { A1,A1 } \\ \text { A4 } \\ {[8]} \end{gathered}$	M1 for each attempted factor pair A1 for each quadratic - follow through sign errors Minus 1 each error - follow through sign errors only
OR	$\begin{aligned} & -\mathrm{A}=\sum \alpha=4 \Rightarrow \mathrm{~A}=-4 \\ & \mathrm{~B}=\sum \alpha \beta=9 \Rightarrow \mathrm{~B}=9 \\ & -\mathrm{C}=\sum \alpha \beta \gamma=16 \Rightarrow \mathrm{C}=-16 \\ & \mathrm{D}=\sum \alpha \beta \gamma \delta=20 \Rightarrow \mathrm{D}=20 \end{aligned}$	M1, A1 M1, A1 M1, A1 M1, A1 [8]	M1s for reasonable attempt to find sums S.C. If one sign incorrect, give total of A3 for A, B, C, D values If more than one sign incorrect, give total of A2 for $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ values
OR	Attempt to substitute two correct roots into $x^{4}+A x^{3}+B x^{2}+C x+D=0$ Produce 2 correct equations in two unknowns $A=-4, B=9, C=-16, D=20$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A2 } \\ & \text { A4 } \end{aligned}$	One for each root One for each equation One mark for each correct. S.C. If one sign incorrect, give total of A3 for A, B, C, D values If more than one sign incorrect, give total of A2 for A, B, C, D values

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

Abstract

\square

\end{abstract}

\end{abstract}

\begin{abstract}

\begin{abstract}

\begin{abstract}

Abstract

\qquad

\qquad

\end{abstract}

\end{abstract}

\end{abstract}

\end{abstract}

\end{abstract}

\begin{abstract}

\begin{abstract}
4

(2)

路
.

Abstract

震
\qquad
²0)
(
\end{abstract}

\end{abstract}

-

\qquad
\square

Abstract

\qquad
\qquad
\end{abstract}

\end{abstract}

\end{abstract}

\end{abstract}

\end{abstract}

\qquad

Section A

\begin{tabular}{|c|c|c|c|}
\hline 1(i)

1(ii) \& \[
$$
\begin{aligned}
& 2 \mathbf{B}=\left(\begin{array}{cc}
4 & -6 \\
2 & 8
\end{array}\right), \mathbf{A}+\mathbf{C} \text { is impossible, } \\
& \mathbf{C A}=\left(\begin{array}{ll}
3 & 1 \\
2 & 4 \\
1 & 2
\end{array}\right), \mathbf{A}-\mathbf{B}=\left(\begin{array}{cc}
2 & 6 \\
0 & -2
\end{array}\right) \\
& \mathbf{A B}=\left(\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right)=\left(\begin{array}{cc}
11 & 0 \\
4 & 5
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{cc}
2 & -3 \\
1 & 4
\end{array}\right)\left(\begin{array}{ll}
4 & 3 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
5 & 0 \\
8 & 11
\end{array}\right) \\
& \mathbf{A B} \neq \mathbf{B} \mathbf{A}
\end{aligned}
$$

\] \& | $\begin{gathered} \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{M} 1, \mathrm{~A} 1 \\ \mathrm{~B} 1 \end{gathered}$ |
| :--- |
| [5] |
| M1 |
| E1 |
| [2] | \& | CA 3×2 matrix M1 |
| :--- |
| Or AC impossible, or student's own correct example. Allow M1 even if slip in multiplication |
| Meaning of commutative |

\hline 2(i)

2(ii) \& $$
|z|=\sqrt{\left(a^{2}+b^{2}\right)}, z^{*}=a-b \mathrm{j}
$$

$$
z z^{*}=(a+b j)(a-b j)=a^{2}+b^{2}
$$

\[
\Rightarrow z z^{*}-|z|^{2}=a^{2}+b^{2}-\left(a^{2}+b^{2}\right)=0

\] \& \& | Serious attempt to find $z z^{*}$, consistent with their z^{*} |
| :--- |
| ft their $\|z\|$ in subtraction |
| All correct |

\hline 3 \& \[
$$
\begin{aligned}
& \sum_{r=1}^{n}(r+1)(r-1)=\sum_{r=1}^{n}\left(r^{2}-1\right) \\
& =\frac{1}{6} n(n+1)(2 n+1)-n \\
& =\frac{1}{6} n[(n+1)(2 n+1)-6] \\
& =\frac{1}{6} n\left(2 n^{2}+3 n-5\right) \\
& =\frac{1}{6} n(2 n+5)(n-1)
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1, A1, A1 |
| M1 |
| A1 |
| [6] | \& | Condone missing brackets |
| :--- |
| Attempt to use standard results Each part correct |
| Attempt to collect terms with common denominator |
| c.a.o. |

\hline
\end{tabular}

4(i) 4(ii)	$\begin{aligned} & 6 x-2 y=a \\ & -3 x+y=b \end{aligned}$ Determinant $=0$ The equations have no solutions or infinitely many solutions.		No solution or infinitely many solutions Give E2 for 'no unique solution' s.c. 1: Determinant $=12$, allow 'unique solution' B0 E1 E0 s.c. 2 : Determinant $=\frac{1}{0}$ give maximum of B 0 E 1
	$\alpha+\beta+\gamma=-3, \alpha \beta+\beta \gamma+\gamma \alpha=-7, \alpha \beta \gamma=-1$ Coefficients A, B and C $\begin{aligned} & 2 \alpha+2 \beta+2 \gamma=2 \times-3=-6=\frac{-B}{A} \\ & 2 \alpha \times 2 \beta+2 \beta \times 2 \gamma+2 \gamma \times 2 \alpha=4 \times-7=-28=\frac{C}{A} \\ & 2 \alpha \times 2 \beta \times 2 \gamma=8 \times-1=-8=\frac{-D}{A} \\ & \Rightarrow x^{3}+6 x^{2}-28 x+8=0 \end{aligned}$ OR $\begin{aligned} & \omega=2 x \Rightarrow x=\frac{\omega}{2} \\ & \left(\frac{\omega}{2}\right)^{3}+3\left(\frac{\omega}{2}\right)^{2}-7\left(\frac{\omega}{2}\right)+1=0 \\ & \Rightarrow \frac{\omega^{3}}{8}+\frac{3 \omega^{2}}{4}-\frac{7 \omega}{2}+1=0 \\ & \Rightarrow \omega^{3}+6 \omega^{2}-28 \omega+8=0 \end{aligned}$	B2 [2] M1 A3 [4] M1 A1 A1 A1 [4]	Minus 1 each error to minimum of 0 Attempt to use sums and products of roots ft their coefficients, minus one each error (including ' $=0$ ' missing), to minimum of 0 Attempt at substitution Correct substitution Substitute into cubic (ft) c.a.o.

6	$\begin{aligned} & \sum_{r=1}^{n} \frac{1}{r(r+1)}=\frac{n}{n+1} \\ & n=1, \text { LHS }=\text { RHS }=\frac{1}{2} \end{aligned}$ Assume true for $n=k$ Next term is $\frac{1}{(k+1)(k+2)}$ Add to both sides $\begin{align*} & \text { RHS }=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \tag{ft}\\ & =\frac{k(k+2)+1}{(k+1)(k+2)} \\ & =\frac{k^{2}+2 k+1}{(k+1)(k+2)} \\ & =\frac{(k+1)^{2}}{(k+1)(k+2)} \\ & =\frac{k+1}{k+2} \end{align*}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$	B1 E1 B1 M1 A1 E1 E1 [7]	Assuming true for k (must be explicit) $(k+1)^{\text {th }}$ term seen c.a.o. Add to $\frac{k}{k+1}$ c.a.o. with correct working True for k, therefore true for $k+1$ (dependent on $\frac{k+1}{k+2}$ seen) Complee argument

Section B (continued)			
9(i)	$(25,50)$	$\begin{aligned} & \hline \text { B1 } \\ & {[1]} \end{aligned}$	
9(ii)	$\left(\frac{1}{2} y, y\right)$	$\begin{aligned} & \mathrm{B} 1, \\ & \mathrm{~B} 1 \end{aligned}$	
		[2]	
9(iii)	$y=6$	B1	
		[1]	
9(iv)	All such lines are parallel to the x-axis.	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	Or equivalent
9(v)	All such lines are parallel to $y=2 x$.	B1	
9(vi)			Or equivalent
	$\left(\begin{array}{ll} 0 & \frac{1}{2} \\ 0 & 1 \end{array}\right)$	B3	Minus 1 each error s.c. Allow 1 for reasonable
9(vii)	$\operatorname{det}\left(\begin{array}{ll} 0 & \frac{1}{2} \\ 0 & 1 \end{array}\right)=0 \times 1-0 \times \frac{1}{2}=0$ Transformation many to one.	[3] M1	attempt but incorrect working Attempt to show determinant $=0$ or other valid argument
		E2	May be awarded without previous M1 Allow E1 for 'transformation has no inverse' or other partial explanation
Section B Total: 36			
Total: 72			

Mark Scheme 4755 June 2006

Mark Scheme
June
2000

都

\square
五
都

．
路

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1 (i)
1(ii)
1(iii) \& Reflection in the \(x\)-axis.
\[
\begin{aligned}
\& \left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right) \\
\& \left(\begin{array}{cc}
1 \& 0 \\
0 \& -1
\end{array}\right)\left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right)=\left(\begin{array}{cc}
0 \& -1 \\
-1 \& 0
\end{array}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\text { B1 } \\
{[1]} \\
\text { B1 } \\
{[1]} \\
\text { M1 } \\
\\
\text { A1 } \\
\text { c.a.o. } \\
\text { [2] }
\end{gathered}
\] \& Multiplication of their matrices in the correct order or B2 for correct matrix without working \\
\hline 2 \& \[
\begin{aligned}
\& (x+2)\left(A x^{2}+B x+C\right)+D \\
\& =A x^{3}+B x^{2}+C x+2 A x^{2}+2 B x+2 C+D \\
\& =A x^{3}+(2 A+B) x^{2}+(2 B+C) x+2 C+D \\
\& \Rightarrow A=2, B=-7, C=15, D=-32
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
F1 \\
F1 \\
OR \\
B5 \\
[5]
\end{tabular} \& \begin{tabular}{l}
Valid method to find all coefficients \\
For \(A=2\) \\
For \(D=-32\) \\
F1 for each of \(B\) and \(C\) \\
For all correct
\end{tabular} \\
\hline 3(i)

3(ii) \& $$
\alpha+\beta+\gamma=-4
$$

$$
\alpha \beta+\beta \gamma+\alpha \gamma=-3
$$

$$
\alpha \beta \gamma=-1
$$

\[
$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =16+6=22
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| [3] |
| M1 |
| A1 |
| E1 |
| [3] | \& | Attempt to use $(\alpha+\beta+\gamma)^{2}$ |
| :--- |
| Correct |
| Result shown |

\hline 4 (i)

4(ii) \& Argand diagram with solid circle, centre $3-\mathrm{j}$, radius 3, with values of z on and within the circle clearly indicated as satisfying the inequality. \& \begin{tabular}{l}
B1

B1

B1

[3]

B1

B1

[2]

 \&

Circle, radius 3 , shown on diagram

Circle centred on 3 - j

Solution set indicated (solid circle with region inside)

Hole, radius 1, shown on diagram Boundaries dealt with correctly
\end{tabular}

\hline
\end{tabular}

Mark Scheme 4755
January 2007 Mark Scheme 4755
January 2007
mi s
\qquad
\qquad
\qquad
\qquad

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1 \& The statement is false. The 'if' part is true, but the 'only if' is false since \(x=-2\) also satisfies the equation. \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& 'False', with attempted justification (may be implied) Correct justification \\
\hline 2(i) \& \[
\begin{aligned}
\& \frac{4 \pm \sqrt{16-28}}{2} \\
\& =\frac{4 \pm \sqrt{12}}{2} \mathrm{j}=2 \pm \sqrt{3} \mathrm{j}
\end{aligned}
\]
 \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1 } \\
{[4]} \\
\\
\text { B1(ft) } \\
\text { B1(ft) } \\
\\
{[2]}
\end{gathered}
\] \& \begin{tabular}{l}
Attempt to use quadratic formula or other valid method Correct \\
Unsimplified form. \\
Fully simplified form. \\
One correct, with correct labelling Other in correct relative position s.c. give B1 if both points consistent with (i) but no/incorrect labelling
\end{tabular} \\
\hline 3(i)

3(ii) \& \begin{tabular}{l}

$$
\left(\begin{array}{ll}
2 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 0 & 2
\end{array}\right)=\left(\begin{array}{lll}
2 & 2 & 4 \\
1 & 0 & 1
\end{array}\right)
$$

Stretch, factor 2 in x-direction, stretch factor half in y-direction.

 \&

B3
B1

ELSE

M1

A1

[4]

B1

B1

B1

[3]

 \&

Points correctly plotted Points correctly labelled

Applying matrix to points Minus 1 each error

1 mark for stretch (withhold if rotation, reflection or translation mentioned incorrectly) 1 mark for each factor and direction
\end{tabular}

\hline
\end{tabular}

4	$\begin{aligned} & \sum_{r=1}^{n} r\left(r^{2}+1\right)=\sum_{r=1}^{n} r^{3}+\sum_{r=1}^{n} r \\ & =\frac{1}{4} n^{2}(n+1)^{2}+\frac{1}{2} n(n+1) \\ & =\frac{1}{4} n(n+1)[n(n+1)+2] \\ & =\frac{1}{4} n(n+1)\left(n^{2}+n+2\right) \end{aligned}$	M1 M1 A1 M1 A1 A1 [6]	Separate into two sums (may be implied by later working) Use of standard results Correct Attempt to factorise (dependent on previous M marks) Factor of $n(n+1)$ c.a.o.
5	$\begin{aligned} & \omega=2 x+1 \Rightarrow x=\frac{\omega-1}{2} \\ & 2\left(\frac{\omega-1}{2}\right)^{3}-3\left(\frac{\omega-1}{2}\right)^{2}+\left(\frac{\omega-1}{2}\right)-4=0 \\ & \Rightarrow \frac{1}{4}\left(\omega^{3}-3 \omega^{2}+3 \omega-1\right)-\frac{3}{4}\left(\omega^{2}-2 \omega+1\right) \\ & +\frac{1}{2}(\omega-1)-4=0 \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1(ft) } \\ \text { A1(ft) } \\ \\ \text { A2 } \\ \\ \hline[7] \\ \hline \end{gathered}$	Attempt to give substitution Correct Substitute into cubic Cubic term Quadratic term Minus 1 each error (missing ' $=0$ ' is an error)
5	OR $\begin{aligned} & \alpha+\beta+\gamma=\frac{3}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{1}{2} \\ & \alpha \beta \gamma=2 \end{aligned}$ Let new roots be k, I, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)+3=6=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)+ \\ & 4(\alpha+\beta+\gamma)+3=11=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma+4(\alpha \beta+\beta \gamma+\beta \gamma) \\ & +2(\alpha+\beta+\gamma)+1=22=\frac{-D}{A} \\ & \Rightarrow \omega^{3}-6 \omega^{2}+11 \omega-22=0 \end{aligned}$	M1 A1 M1 M1 M1 A2 [7]	Attempt to find sums and products of roots All correct Use of sum of roots Use of sum of product of roots in pairs Use of product of roots Minus 1 each error (missing ' $=0$ ' is an error)

\begin{tabular}{|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
\& n=1, \text { LHS }=\text { RHS }=1 \\
\& \text { Assume true for } n=k
\end{aligned}
\] \\
Next term is \((k+1)^{2}\) \\
Add to both sides
\[
\begin{aligned}
\& \text { RHS }=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
\& =\frac{1}{6}(k+1)[k(2 k+1)+6(k+1)] \\
\& =\frac{1}{6}(k+1)\left[2 k^{2}+7 k+6\right] \\
\& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
\& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
\] \\
But this is the given result with \(k+1\) replacing \(k\). Therefore if it is true for \(k\) it is true for \(k+1\). Since it is true for \(k=1\), it is true for \(k=1,2,3\) and so true for all positive integers.
\end{tabular} \& B1
M1
B1
M1
M1
A1
A1
E1

E1

[8] \& | Assuming true for k. $(k+1)$ th term. |
| :--- |
| Add to both sides |
| Attempt to factorise |
| Correct brackets required - also allow correct unfactorised form Showing this is the expression with $n=k+1$ |
| Only if both previous E marks awarded |

\hline
\end{tabular}

 lel^{2}

[^0]\square

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1(i) \& \[
\mathbf{M}^{-1}=\frac{1}{10}\left(\begin{array}{cc}
3 \& 1 \\
-4 \& 2
\end{array}\right)
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
{[2]}
\end{gathered}
\] \& Attempt to find determinant \\
\hline 1(ii) \& 20 square units \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& {[1]}
\end{aligned}
\] \& \(2 \times\) their determinant \\
\hline 2 \& \(|z-(3-2 \mathrm{j})|=2\) \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3]
\end{tabular} \& \[
\begin{aligned}
\& z \pm(3-2 j) \text { seen } \\
\& \text { radius }=2 \text { seen } \\
\& \text { Correct use of modulus }
\end{aligned}
\] \\
\hline 3 \& \[
\begin{aligned}
\& x^{3}-4=(x-1)\left(A x^{2}+B x+C\right)+D \\
\& \Rightarrow x^{3}-4=A x^{3}+(B-A) x^{2}+(C-B) x-C+D \\
\& \Rightarrow A=1, B=1, C=1, D=-3
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
B1 \\
B1 \\
[5]
\end{tabular} \& \begin{tabular}{l}
Attempt at equating coefficients or long division (may be implied) For \(A=1\) \\
B1 for each of \(B, C\) and \(D\)
\end{tabular} \\
\hline 4(i) \& \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { [2] }
\end{aligned}
\] \& One for each correctly shown. s.c. B1 if not labelled correctly but position correct \\
\hline 4(ii) \& \[
\alpha \beta=(1-2 \mathrm{j})(-2-\mathrm{j})=-4+3 \mathrm{j}
\] \& M1
A1
[2] \& Attempt to multiply \\
\hline 4(iii) \& \[
\frac{\alpha+\beta}{\beta}=\frac{(\alpha+\beta) \beta^{*}}{\beta \beta^{*}}=\frac{\alpha \beta^{*}+\beta \beta^{*}}{\beta \beta^{*}}=\frac{5 \mathrm{j}+5}{5}=\mathrm{j}+1
\] \& M1

A1
A1
[3] \& Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
Scheme A
\[
\begin{aligned}
\& w=3 x \Rightarrow x=\frac{w}{3} \\
\& \Rightarrow\left(\frac{w}{3}\right)^{3}+3\left(\frac{w}{3}\right)^{2}-7\left(\frac{w}{3}\right)+1=0 \\
\& \Rightarrow w^{3}+9 w^{2}-63 w+27=0
\end{aligned}
\] \\
OR
\end{tabular} \& B1
M1
A3

A1

$[6]$ \& | Substitution. For substitution $x=3 w$ give B0 but then follow through for a maximum of 3 marks |
| :--- |
| Substitute into cubic |
| Correct coefficients consistent with x^{3} coefficient, minus 1 each error |
| Correct cubic equation c.a.o. |

\hline \& | Scheme B $\begin{aligned} & \alpha+\beta+\gamma=-3 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-7 \\ & \alpha \beta \gamma=-1 \end{aligned}$ |
| :--- |
| Let new roots be k, l, m then $\begin{aligned} & k+l+m=3(\alpha+\beta+\gamma)=-9=\frac{-B}{A} \\ & k l+k m+l m=9(\alpha \beta+\alpha \gamma+\beta \gamma)=-63=\frac{C}{A} \\ & k l m=27 \alpha \beta \gamma=-27=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+9 \omega^{2}-63 \omega+27=0 \end{aligned}$ | \& M1

M1

A3

A1

$[6]$ \& | Attempt to find sums and products of roots (at least two of three) |
| :--- |
| Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation |
| Correct coefficients consistent with x^{3} coefficient, minus 1 each error |
| Correct cubic equation c.a.o. |

\hline 6(i) \& $$
\frac{1}{r+2}-\frac{1}{r+3}=\frac{r+3-(r+2)}{(r+2)(r+3)}=\frac{1}{(r+2)(r+3)}
$$ \& M1

A1
[2] \& Attempt at common denominator

\hline 6(ii) \& $$
\begin{aligned}
& \sum_{r=1}^{50} \frac{1}{(r+2)(r+3)}=\sum_{r=1}^{50}\left[\frac{1}{r+2}-\frac{1}{r+3}\right] \\
& =\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\ldots . . \\
& +\left(\frac{1}{51}-\frac{1}{52}\right)+\left(\frac{1}{52}-\frac{1}{53}\right) \\
& =\frac{1}{3}-\frac{1}{53}=\frac{50}{159}
\end{aligned}
$$ \& M1

M1,
M1
A1

[4] \& | Correct use of part (i) (may be implied) |
| :--- |
| First two terms in full |
| Last two terms in full (allow in terms of n) |
| Give B4 for correct without working Allow 0.314 (3s.f.) |

\hline
\end{tabular}

Section B			
8(i) 8(ii)	$(2,0),(-2,0),\left(0, \frac{-4}{3}\right)$	B1 B1 B1 [3]	1 mark for each s.c. B2 for $2,-2, \frac{-4}{3}$
	$x=3, x=-1, x=1, y=0$	$\begin{aligned} & \text { B4 } \\ & {[4]} \end{aligned}$	Minus 1 for each error
	Large positive $x, y \rightarrow 0^{+}$, approach from above (e.g. consider $x=100$) Large negative $x, y \rightarrow 0^{-}$, approach from below (e.g. consider $x=-100$)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & {[3]} \end{aligned}$	Direction of approach must be clear for each B mark Evidence of method required
8(iv)	Curve 4 branches correct Asymptotes correct and labelled Intercepts labelled	B2 B1 B1 [4]	Minus 1 each error, min 0

Section B (continued)			
10(i)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ccc} 1 & -2 & k \\ 2 & 1 & 2 \\ 3 & 2 & -1 \end{array}\right)\left(\begin{array}{ccc} -5 & -2+2 k & -4-k \\ 8 & -1-3 k & -2+2 k \\ 1 & -8 & 5 \end{array}\right) \\ & =\left(\begin{array}{ccc} k-21 & 0 & 0 \\ 0 & k-21 & 0 \\ 0 & 0 & k-21 \end{array}\right) \\ & n=21 \end{aligned}$	A1 [2]	Attempt to multiply matrices (can be implied)
10(ii)	$\mathbf{A}^{-1}=\frac{1}{k-21}\left(\begin{array}{ccc} -5 & -2+2 k & -4-k \\ 8 & -1-3 k & -2+2 k \\ 1 & -8 & 5 \end{array}\right)$	M1 M1 A1	Use of B Attempt to use their answer to (i) Correct inverse
	$k \neq 21$	A1 [4]	Accept n in place of 21 for full marks
$\begin{gathered} 10 \\ \text { (iii) } \end{gathered}$	Scheme A $\frac{1}{-20}\left(\begin{array}{ccc} -5 & 0 & -5 \\ 8 & -4 & 0 \\ 1 & -8 & 5 \end{array}\right)\left(\begin{array}{c} 1 \\ 12 \\ 3 \end{array}\right)=\frac{1}{-20}\left(\begin{array}{l} -20 \\ -40 \\ -80 \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ 4 \end{array}\right)$ $x=1, y=2, z=4$ OR Scheme B Attempt to eliminate 2 variables Substitute in their value to attempt to find others $x=1, y=2, z=4$	M1 M1 A3 [5] M1 M1 A3 [5]	Attempt to use inverse Their inverse with $k=1$ One for each correct (ft) s.c. award 2 marks only for $x=1, y=2, z=4$ with no working.
Section B Total: 36			
			Total: 72

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\mathbf{B A}=\left(\begin{array}{cc} 3 & 1 \\ -2 & 4 \end{array}\right)\left(\begin{array}{cc} 2 & -1 \\ 0 & 3 \end{array}\right)=\left(\begin{array}{cc} 6 & 0 \\ -4 & 14 \end{array}\right)$	M1 A1 [2]	Attempt to multiply c.a.o.
1(ii)	$\operatorname{det} \mathbf{B} \mathbf{A}=(6 \times 14)-(-4 \times 0)=84$ $3 \times 84=252$ square units	$\begin{array}{r} \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1(\mathrm{ft}) \\ {[3]} \\ \hline \end{array}$	Attempt to calculate any determinant c.a.o. Correct area
2(i)2(ii)	$\alpha^{2}=(-3+4 \mathrm{j})(-3+4 \mathrm{j})=(-7-24 \mathrm{j})$	M1 A1 [2]	Attempt to multiply with use of $\mathrm{j}^{2}=-1$ c.a.o.
	$\begin{aligned} & \|\alpha\|=5 \\ & \arg \alpha=\pi-\arctan \frac{4}{3}=2.21 \text { (2d.p.) (or } \\ & 126.87^{\circ} \text {) } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept 2.2 or 127°
	$\alpha=5(\cos 2.21+\mathrm{j} \sin 2.21)$	B 1 (ft) [3]	Accept degrees and (r, θ) form s.c. lose 1 mark only if α^{2} used throughout (ii)
3(i)	$3^{3}+3^{2}-7 \times 3-15=0$	B1 M1 A1	Showing 3 satisfies the equation (may be implied) Valid attempt to factorise Correct quadratic factor
	$z=\frac{-4 \pm \sqrt{16-20}}{2}=-2 \pm \mathrm{j}$	M1	Use of quadratic formula, or other valid method
	So other roots are $-2+\mathrm{j}$ and $-2-\mathrm{j}$	A1 [5]	One mark for both c.a.o.
3(ii)		B2 [2]	Minus 1 for each error ft provided conjugate imaginary roots

4	$\begin{aligned} & \sum_{r=1}^{n}[(r+1)(r-2)]=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-2 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-2 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-12] \\ & =\frac{1}{6} n\left(2 n^{2}+3 n+1-3 n-3-12\right) \\ & =\frac{1}{6} n\left(2 n^{2}-14\right) \\ & =\frac{1}{3} n\left(n^{2}-7\right) \end{aligned}$	M1 A2 M1 M1 A1 [6]	Attempt to split sum up Minus one each error Attempt to factorise Collecting terms All correct
$\begin{gathered} 5(i) \\ 5(i i) \end{gathered}$	$p=-3, r=7$ $q=\alpha \beta+\alpha \gamma+\beta \gamma$ $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma) \\ & =(\alpha+\beta+\gamma)^{2}-2 q \\ & \Rightarrow 13=3^{2}-2 q \\ & \Rightarrow q=-2 \end{aligned}$	B2 [2] B1 M1 A1 [3]	One mark for each s.c. B1 if b and d used instead of p and r Attempt to find q using $\alpha^{2}+\beta^{2}+\gamma^{2}$ and $\alpha+\beta+\gamma$, but not $\alpha \beta \gamma$ c.a.o.
6(i)	$\begin{aligned} & a_{2}=7 \times 7-3=46 \\ & a_{3}=7 \times 46-3=319 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Use of inductive definition c.a.o.
6(ii)	When $n=1, \frac{13 \times 7^{0}+1}{2}=7$, so true for $n=1$ Assume true for $n=k$ $\begin{aligned} & a_{k}=\frac{13 \times 7^{k-1}+1}{2} \\ & \Rightarrow a_{k+1}=7 \times \frac{13 \times 7^{k-1}+1}{2}-3 \\ & =\frac{13 \times 7^{k}+7}{2}-3 \\ & =\frac{13 \times 7^{k}+7-6}{2} \\ & =\frac{13 \times 7^{k}+1}{2} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $k=1$, it is true for $k=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Correct use of part (i) (may be implied) Assuming true for k Attempt to use $a_{k+1}=7 a_{k}-3$ Correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

Section A Total:

9(i)	$(-3,-3)$	B1 [1]	
9(ii)	(x, x)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
		[2]	
9(iii)	$\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$	B3 [3]	Minus 1 each error to min of 0
9(iv)	Rotation through $\frac{\pi}{2}$ anticlockwise about the origin	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \quad[2] \end{aligned}$	Rotation and angle (accept 90°) Centre and sense
9(v)	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \times\left(\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array}\right)$	M1 A1	Attempt to multiply using their \mathbf{T} in correct order c.a.o.
9(vi)	$\left(\begin{array}{cc} -1 & 0 \\ 1 & 0 \end{array}\right)\binom{x}{y}=\binom{-x}{x}$	$\begin{gathered} \mathrm{M} 1 \\ \mathrm{~A} 1(\mathrm{ft}) \end{gathered}$	May be implied
	So (-x, x)		
	Line $y=-x$	A1	c.a.o. from correct matrix
		[3]	

4755 (FP1) Further Concepts for Advanced Mathematics

Qu	Answer	Mark	Comment
Section A			
1(i)	$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$	B1	
1(ii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)$	B1	Multiplication, or other valid method (may be implied) c.a.o.
1(iii)	$\left(\begin{array}{ll} 3 & 0 \\ 0 & 3 \end{array}\right)\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{cc} -3 & 0 \\ 0 & 3 \end{array}\right)$	M1 A1 [4]	
2	$\rightarrow R_{e}$	B3	Circle, B1; centre $-3+2 \mathrm{j}, \mathrm{B} 1$; radius $=2, \mathrm{~B} 1$
		B3	Line parallel to real axis, B 1 ; through (0,2), B1; correct half line, B1
		B1 [7]	Points $-1+2 \mathrm{j}$ and $-5+2 \mathrm{j}$ indicated c.a.o.
3	$\begin{aligned} & \left(\begin{array}{cc} -1 & -1 \\ 2 & 2 \end{array}\right)\binom{x}{y}=\binom{x}{y} \\ & \Rightarrow-x-y=x, 2 x+2 y=y \\ & \Rightarrow y=-2 x \end{aligned}$	M1 M1 B1 [3]	For $\left(\begin{array}{cc}-1 & -1 \\ 2 & 2\end{array}\right)\binom{x}{y}=\binom{x}{y}$
4	$\begin{aligned} & 3 x^{3}-x^{2}+2 \equiv A(x-1)^{3}+\left(x^{3}+B x^{2}+C x+D\right) \\ & \equiv A x^{3}-3 A x^{2}+3 A x-A+x^{3}+B x^{2}+C x+D \\ & \equiv(A+1) x^{3}+(B-3 A) x^{2}+(3 A+C) x+(D-A) \\ & \Rightarrow A=2, B=5, C=-6, D=4 \end{aligned}$	M1 B4 [5]	Attempt to compare coefficients One for each correct value

5(i)	$\mathbf{A B}=\left(\begin{array}{lll} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{array}\right)$ $\mathbf{A}^{-1}=\frac{1}{7}\left(\begin{array}{ccc} -1 & 0 & 2 \\ 14 & -14 & 7 \\ -5 & 7 & -4 \end{array}\right)$	B3 [3] M1 A1 [2]	Minus 1 each error to minimum of 0 Use of B c.a.o.
6	$\begin{aligned} & w=2 x \Rightarrow x=\frac{w}{2} \\ & \Rightarrow 2\left(\frac{w}{2}\right)^{3}+\left(\frac{w}{2}\right)^{2}-3\left(\frac{w}{2}\right)+1=0 \\ & \Rightarrow w^{3}+w^{2}-6 w+4=0 \end{aligned}$	B1 M1 A1 A2 [5]	Substitution. For substitution $x=2 w$ give BO but then follow through for a maximum of 3 marks Substitute into cubic Correct substitution Minus 1 for each error (including ' $=0$ ' missing), to a minimum of 0 Give full credit for integer multiple of equation
6	OR $\begin{aligned} & \alpha+\beta+\gamma=-\frac{1}{2} \\ & \alpha \beta+\alpha \gamma+\beta \gamma=-\frac{3}{2} \\ & \alpha \beta \gamma=-\frac{1}{2} \end{aligned}$ Let new roots be k, l, m then $\begin{aligned} & k+l+m=2(\alpha+\beta+\gamma)=-1=\frac{-B}{A} \\ & k l+k m+l m=4(\alpha \beta+\alpha \gamma+\beta \gamma)=-6=\frac{C}{A} \\ & k l m=8 \alpha \beta \gamma=-4=\frac{-D}{A} \\ & \Rightarrow \omega^{3}+\omega^{2}-6 \omega+4=0 \end{aligned}$	B1 M1 A1 A2 [5]	All three Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation Sums and products all correct ft their coefficients; minus one for each error (including ' $=0$ ' missing), to minimum of 0 Give full credit for integer multiple of equation

Section B			
8(i)	$x=3, x=-2, y=2$	B1 B1 B1 [3]	
8(ii)	Large positive $x, y \rightarrow 2^{+}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow 2^{-}$ (e.g. consider $x=-100$)	M1 B1 B1 [3]	Evidence of method required
	Curve Central and RH branches correct Asymptotes correct and labelled LH branch correct, with clear minimum	$\begin{gathered} \mathrm{B} 1 \\ \text { B1 } \\ \text { B1 } \\ \text { [3] } \end{gathered}$	
8(iv)	$\begin{aligned} & -2<x<3 \\ & x \neq 0 \end{aligned}$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \\ & {[3]} \end{aligned}$	B2 max if any inclusive inequalities appear B3 for $-2<x<0$ and $0<x<3$,

4755 (FP1) Further Concepts for Advanced Mathematics

Section A

\begin{tabular}{|c|c|c|c|}
\hline 4 \& \(\arg (z-(2-2 \mathrm{j}))=\frac{\pi}{4}\) \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3]
\end{tabular} \& \begin{tabular}{l}
Equation involving arg(complex variable). \\
Argument \((\) complex expression \()=\)
\[
\frac{\pi}{4}
\] \\
All correct
\end{tabular} \\
\hline 5 \& \begin{tabular}{l}
Sum of roots \(=\alpha+(-3 \alpha)+\alpha+3=3-\alpha=5\)
\[
\Rightarrow \alpha=-2
\] \\
Product of roots
\[
=-2 \times 6 \times 1=-12
\] \\
Product of roots in pairs
\[
\begin{aligned}
\& =-2 \times 6+(-2) \times 1+6 \times 1=-8 \\
\& \Rightarrow p=-8 \text { and } q=12
\end{aligned}
\] \\
Alternative solution
\[
\begin{aligned}
\& (x-\alpha)(x+3 \alpha)(x-\alpha-3) \\
\& =x^{3}+(\alpha-3) x^{2}+\left(-5 \alpha^{2}-6 \alpha\right) \mathrm{x}+3 \alpha^{3}+9 \alpha^{2} \\
\& \Rightarrow \quad \alpha=-2, \\
\& \quad p=-8 \text { and } q=12
\end{aligned}
\]
\end{tabular} \& M1
A1
M1
M1

A1
A1
$[6]$
M1
M1A1
M1
A1A1

$[6]$ \& | Use of sum of roots |
| :--- |
| Attempt to use product of roots Attempt to use sum of products of roots in pairs |
| One mark for each, ft if α incorrect |
| Attempt to multiply factors |
| Matching coefficient of x^{2},cao. |
| Matching other coefficients |
| One mark for each, ft incorrect α. |

\hline 6 \& \[
$$
\begin{aligned}
& \sum_{r=1}^{n}\left[r\left(r^{2}-3\right)\right]=\sum_{r=1}^{n} r^{3}-3 \sum_{r=1}^{n} r \\
& =\frac{1}{4} n^{2}(n+1)^{2}-\frac{3}{2} n(n+1) \\
& =\frac{1}{4} n(n+1)(n(n+1)-6) \\
& =\frac{1}{4} n(n+1)\left(n^{2}+n-6\right)=\frac{1}{4} n(n+1)(n+3)(n-2)
\end{aligned}
$$

\] \& M1 M1 A2 M1 A1 [6] \& | Separate into separate sums. (may be implied) |
| :--- |
| Substitution of standard result in terms of n. |
| For two correct terms (indivisible) |
| Attempt to factorise with $n(n+1)$. |
| Correctly factorised to give fully factorised form |

\hline
\end{tabular}

7	When $n=1,6\left(3^{n}-1\right)=12$, so true for $n=1$ Assume true for $n=k$ $\begin{aligned} & 12+36+108+\ldots . .+\left(4 \times 3^{k}\right)=6\left(3^{k}-1\right) \\ & \Rightarrow 12+36+108+\ldots .+\left(4 \times 3^{k+1}\right) \\ & =6\left(3^{k}-1\right)+\left(4 \times 3^{k+1}\right) \\ & =6\left[\left(3^{k}-1\right)+\frac{2}{3} \times 3^{k+1}\right] \\ & =6\left[3^{k}-1+2 \times 3^{k}\right] \\ & =6\left(3^{k+1}-1\right) \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$, it is true for $n=k+1$. Since it is true for $n=1$, it is true for $n=1,2$, 3... and so true for all positive integers.	B1 E1 M1 M1 A1 E1 E1	Assume true for k Add correct next term to both sides Attempt to factorise with a factor 6 c.a.o. with correct simplification Dependent on A1 and first E1 Dependent on B1 and second E1

Sectio				
8(i)	$(\sqrt{3}, 0),(-\sqrt{3}, 0)\left(0, \frac{3}{8}\right)$	B1 B1 [2]	Intercepts with x axis (both) Intercept with y axis SC1 if seen on graph or if $x= \pm \sqrt{ } 3$, $y=3 / 8$ seen without $y=0, x=0$ specified.	
8(ii)	$x=4, x=-2, y=1$	B3 [3]	Minus 1 for each error. Accept equations written on the graph.	
8(iii)				
			B1 B1B1 B1	Correct approaches to vertical asymptotes, LH and RH branches LH and RH branches approaching horizontal asymptote
		B1 [4]	On LH branch $0<y<1$ as $x \rightarrow-\infty$.	
8(iv)	$-2<x \leq-\sqrt{3}$ and $4>x \geq \sqrt{3}$	B1 B2 [3]	LH interval and RH interval correct (Award this mark even if errors in inclusive/exclusive inequality signs) All inequality signs correct, minus 1 each error	

9 (i)	$\alpha+\beta=3$	B1	
	$\alpha \alpha^{*}=(1+j)(1-j)=2$	M1	Attempt to multiply $(1+\mathrm{j})(1-\mathrm{j})$
	$\underline{\alpha+\beta}=\frac{3}{}=\frac{3(1-\mathrm{j})}{}=\frac{3}{-}-\frac{3}{\mathrm{j}}$	A1 M1	Multiply top and bottom by $1-\mathrm{j}$
	$\frac{\alpha}{\alpha}=\frac{}{1+\mathrm{j}}=\frac{3}{(1+\mathrm{j})(1-\mathrm{j})}=\frac{2}{2}-\frac{3}{2}$	A1 [5]	
9(ii)			
	$(z-(1+\mathrm{j}))(z-(1-\mathrm{j}))$	M1	Or alternative valid methods
	$=z^{2}-2 z+2$	A1 [2]	(Condone no " $=0$ " here)
9(iii)	$1-\mathrm{j}$ and $2+\mathrm{j}$	B1	For both
	Either $\begin{aligned} & (z-(2-\mathrm{j}))(z-(2+\mathrm{j})) \\ & =z^{2}-4 z+5 \end{aligned}$	M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates
	$\begin{aligned} & \left(z^{2}-2 z+2\right)\left(z^{2}-4 z+5\right) \\ & =z^{4}-6 z^{3}+15 z^{2}-18 z+10 \end{aligned}$	M1	Using the correct four factors
	So equation is $z^{4}-6 z^{3}+15 z^{2}-18 z+10=0$	A2 [5]	All correct, -1 each error (including omission of " $=0$ ") to min of 0
	Or alternative solution Use of $\sum \alpha=6, \sum \alpha \beta=15$, $\sum \alpha \beta \gamma=18$ and $\alpha \beta \gamma \delta=10$	M1	Use of relationships between roots and coefficients.
	to obtain the above equation.	A3 [5]	All correct, -1 each error, to min of 0

10(i)	$\begin{aligned} & \alpha=3 \times-5+4 \times 11+-1 \times 29=0 \\ & \beta=-2 \times-7+7 \times(5+k)+-3 \times 7=28+7 k \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt at row 3 x column 3
10(ii)	$\mathbf{A B}=\left(\begin{array}{ccc} 42 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 42 \end{array}\right)$	[3] B2 [2]	Minus 1 each error to min of 0
10(iii)	$\mathbf{A}^{-1}=\frac{1}{42}\left(\begin{array}{ccc} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{array}\right)$	M1 B1 A1	Use of B $\frac{1}{42}$ Correct inverse, allow decimals to 3 sf
10(iv)	$\begin{aligned} & \frac{1}{42}\left(\begin{array}{ccc} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{array}\right)\left(\begin{array}{c} 1 \\ -9 \\ 26 \end{array}\right)=\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \\ & =\frac{1}{42}\left(\begin{array}{c} -126 \\ 84 \\ -84 \end{array}\right)=\left(\begin{array}{c} -3 \\ 2 \\ -2 \end{array}\right) \\ & x=-3, y=2, z=-2 \end{aligned}$	M1 A3 [4]	Attempt to pre-multiply by \mathbf{A}^{-1} SC B2 for Gaussian elimination with 3 correct solutions, -1 each error to \min of 0 Minus 1 each error

Section B Total: 36
Total: 72

4755 (FP1) Further Concepts for Advanced Mathematics

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Section A} \\
\hline \begin{tabular}{l}
1(i) \\
1(ii)
\end{tabular} \& \[
\mathbf{M}^{-1}=\frac{1}{11}\left(\begin{array}{cc}
2 \& 1 \\
-3 \& 4
\end{array}\right)
\]
\[
\begin{aligned}
\& \frac{1}{11}\left(\begin{array}{cc}
2 \& 1 \\
-3 \& 4
\end{array}\right)\binom{49}{100}=\binom{x}{y}=\frac{1}{11}\binom{198}{253} \\
\& \Rightarrow x=18, y=23
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
[2] \\
M1 \\
A1 (ft) \\
A1 (ft) \\
[3]
\end{tabular} \& \begin{tabular}{l}
Dividing by determinant \\
Pre-multiplying by their inverse
\end{tabular} \\
\hline 2 \& \[
\begin{aligned}
\& z^{3}+z^{2}-7 z-15=(z-3)\left(z^{2}+4 z+5\right) \\
\& z^{2}+4 z+5=0 \Rightarrow z=\frac{-4 \pm \sqrt{16-20}}{2} \\
\& \Rightarrow z=-2+\mathrm{j} \text { and } z=-2-\mathrm{j}
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
[5]
\end{tabular} \& \begin{tabular}{l}
Show \(z=3\) is a root; may be implied \\
Attempt to find quadratic factor Correct quadratic factor Use of quadratic formula or other valid method \\
Both solutions
\end{tabular} \\
\hline 3(i)

3(ii) \&

\[
$$
\begin{aligned}
& \frac{2}{x+4}=x+3 \Rightarrow x^{2}+7 x+10=0 \\
& \Rightarrow x=-2 \text { or } x=-5 \\
& x \geq-2 \text { or }-4>x \geq-5
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| [2] |
| M1 |
| A1 |
| A1 |
| A2 |
| [5] | \& | Asymptote at $x=-4$ |
| :--- |
| Both branches correct |
| Attempt to find where graphs cross or valid attempt at solution using inequalities Correct intersections (both), or -2 and -5 identified as critical values $\begin{aligned} & x \geq-2 \\ & -4>x \geq-5 \end{aligned}$ |
| s.c. |
| A1 for $-4 \geq x \geq-5$ or $-4>x>-5$ |

\hline
\end{tabular}

4	$2 w-6 w+3 w=\frac{-1}{2}$ $\Rightarrow w=\frac{1}{2}$	M1 A1	Use of sum of roots - can be implied
\Rightarrow roots are $1,-3, \frac{3}{2}$	A1		
$\frac{\text { M1 }}{2}=\alpha \beta \gamma=\frac{-9}{2} \Rightarrow q=9$	Correct roots seen Attempt to use relationships between roots S.c. M1 for other valid method		
$\frac{p}{2}=\alpha \beta+\alpha \gamma+\beta \gamma=-6 \Rightarrow p=-12$		A2(ft) [6]	One mark each for $p=-12$ and q $=9$

5(i)	$\begin{aligned} & \frac{1}{5 r-2}-\frac{1}{5 r+3} \equiv \frac{5 r+3-5 r+2}{(5 r+3)(5 r-2)} \\ & \equiv \frac{5}{(5 r+3)(5 r-2)} \end{aligned}$ $\begin{aligned} & \sum_{r=1}^{30} \frac{1}{(5 r-2)(5 r+3)}=\frac{1}{5} \sum_{r=1}^{30}\left[\frac{1}{(5 r-2)}-\frac{1}{(5 r+3)}\right] \\ & =\frac{1}{5}\left[\begin{array}{l} \left(\frac{1}{3}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{18}\right)+\ldots \\ \left.+\left(\frac{1}{5 n-7}-\frac{1}{5 n-2}\right)+\left(\frac{1}{5 n-2}-\frac{1}{5 n+3}\right)\right] \\ =\frac{1}{5}\left[\frac{1}{3}-\frac{1}{5 n+3}\right]=\frac{n}{3(5 n+3)} \end{array}\right. \end{aligned}$	M1 A1 [2] B1 B1 M1 A1	Attempt to form common denominator Correct cancelling First two terms in full Last term in full Attempt to cancel terms
6	When $n=1, \frac{1}{2} n(7 n-1)=3$, so true for $n=$ 1 Assume true for $n=k$ $\begin{aligned} & 3+10+17+\ldots . .+(7 k-4)=\frac{1}{2} k(7 k-1) \\ & \Rightarrow 3+10+17+\ldots . .+(7(k+1)-4) \\ & =\frac{1}{2} k(7 k-1)+(7(k+1)-4) \\ & =\frac{1}{2}[k(7 k-1)+(14(k+1)-8)] \\ & =\frac{1}{2}\left[7 k^{2}+13 k+6\right] \\ & =\frac{1}{2}(k+1)(7 k+6) \\ & =\frac{1}{2}(k+1)(7(k+1)-1) \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is true for $k+1$. Since it is true for $n=1$, it is true for $n=1$, 2,3 and so true for all positive integers.	B1 E1 M1 M1 A1 E1 E1 [7]	Assume true for $n=k$ Add $(k+1)$ th term to both sides Valid attempt to factorise c.a.o. with correct simplification Dependent on previous E1 and immediately previous A1 Dependent on B1 and both previous E marks

Section B			
7(i)	$(0,10),(-2,0),\left(\frac{5}{3}, 0\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [3] } \end{aligned}$	
7(ii)	$x=\frac{-1}{2}, x=1, y=\frac{3}{2}$	B1 B1 B1 [3]	
7(iii)	Large positive $x, y \rightarrow \frac{3^{+}}{2}$ (e.g. consider $x=100$) Large negative $x, y \rightarrow \frac{3^{-}}{2}$ (e.g. consider $x=-100$)	M1 B1 B1 [3]	Clear evidence of method required for full marks
7(iv)	Curve 3 branches of correct shape Asymptotes correct and labelled Intercepts correct and labelled	B1 B1 B1 [3]	

8 (i)	$\|z-(4+2 \mathrm{j})\|=2$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { Radius }=2 \\ & z-(4+2 \mathrm{j}) \text { or } z-4-2 \mathrm{j} \end{aligned}$
		B1	All correct
		[3]	
8(ii)	$\arg (z-(4+2 \mathrm{j}))=0$	B1	Equation involving the argument of a complex variable
		B1	Argument $=0$
		B1	All correct
8(iii)		[3]	
	$\begin{aligned} & a=4-2 \cos \frac{\pi}{4}=4-\sqrt{2} \\ & b=2+2 \sin \frac{\pi}{4}=2+\sqrt{2} \end{aligned}$	M1	Valid attempt to use trigonometry involving $\frac{\pi}{4}$, or coordinate
	$P=4-\sqrt{2}+(2+\sqrt{2}) j$	A2	geometry 1 mark for each of a and b
8(iv)		[3]	s.c. A1 only for $a=2.59, b=3.41$
	$\frac{3}{4} \pi>\arg (z-(4+2 \mathrm{j}))>0$	B1	$\arg (z-(4+2 \mathrm{j}))>0$
	and $\|z-(4+2 \mathrm{j})\|<2$	B1	$\arg (z-(4+2 \mathrm{j}))<\frac{3}{4} \pi$
		B1	$\|z-(4+2 \mathrm{j})\|<2$
		[3]	Deduct one mark if only error is use of inclusive inequalities

4755 (FP1) Further Concepts for Advanced Mathematics

1	$\alpha \beta=(-3+\mathrm{j})(5-2 \mathrm{j})=-13+11 \mathrm{j}$ $\frac{\alpha}{\beta}=\frac{-3+\mathrm{j}}{5-2 \mathrm{j}}=\frac{(-3+\mathrm{j})(5+2 \mathrm{j})}{29}=\frac{-17}{29}-\frac{1}{29} \mathrm{j}$	M1 A1 [2] M1 A1 A1 [3]	Use of $\mathrm{j}^{2}=-1$ Use of conjugate 29 in denominator All correct
2 (i) (ii)	AB is impossible $\begin{aligned} & \mathbf{C A}=(50) \\ & \mathbf{B}+\mathbf{D}=\left(\begin{array}{cc} 3 & 1 \\ 6 & -2 \end{array}\right) \\ & \mathbf{A C}=\left(\begin{array}{ccc} 20 & 4 & 32 \\ -10 & -2 & -16 \\ 20 & 4 & 32 \end{array}\right) \\ & \mathbf{D B}=\left(\begin{array}{cc} -2 & 0 \\ 4 & 1 \end{array}\right)\left(\begin{array}{cc} 5 & 1 \\ 2 & -3 \end{array}\right)=\left(\begin{array}{cc} -10 & -2 \\ 22 & 1 \end{array}\right) \end{aligned}$	B1 B1 B1 B2 [5] M1 A1 [2]	-1 each error Attempt to multiply in correct order c.a.o.
3	$\begin{aligned} & \alpha+\beta+\gamma=a-d+a+a+d=\frac{12}{4} \Rightarrow a=1 \\ & (a-d) a(a+d)=\frac{3}{4} \Rightarrow d= \pm \frac{1}{2} \end{aligned}$ So the roots are $\frac{1}{2}, 1$ and $\frac{3}{2}$ $\alpha \beta+\alpha \gamma+\beta \gamma=\frac{k}{4}=\frac{11}{4} \Rightarrow k=11$	M1 A1 M1 A1 M1 A1 [6]	Valid attempt to use sum of roots $a=1$, c.a.o. Valid attempt to use product of roots All three roots Valid attempt to use $\alpha \beta+\alpha \gamma+\beta \gamma$, or to multiply out factors, or to substitute a root $k=11 \mathrm{c} . \mathrm{a} . \mathrm{o} .$

4	$\begin{aligned} & \mathbf{M M}^{-1}=\frac{1}{k}\left(\begin{array}{ccc} 4 & 0 & 1 \\ -6 & 1 & 1 \\ 5 & 2 & 5 \end{array}\right)\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right) . \\ & =\frac{1}{k}\left(\begin{array}{lll} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{array}\right) \Rightarrow k=5 \\ & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right) \\ & \frac{1}{5}\left(\begin{array}{ccc} -3 & -2 & 1 \\ -35 & -15 & 10 \\ 17 & 8 & -4 \end{array}\right)\left(\begin{array}{c} 9 \\ 32 \\ 81 \end{array}\right)=\frac{1}{5}\left(\begin{array}{c} -10 \\ 15 \\ 85 \end{array}\right) \\ & \Rightarrow x=-2, y=3, z=17 \end{aligned}$	M1 A1 [2] M1 M1 A1 A1 [4]	Attempt to consider $\mathbf{M M}^{-1}$ or $\mathbf{M}^{-1} \mathbf{M}$ (may be implied) c.a.o. Attempt to pre-multiply by \mathbf{M}^{-1} Attempt to multiply matrices Correct All 3 correct s.c. B1 if matrices not used
5	$\begin{aligned} & \sum_{r=1}^{n}(r+2)(r-3)=\sum_{r=1}^{n}\left(r^{2}-r-6\right) \\ & =\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-6 n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-6 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-36] \\ & =\frac{1}{6} n\left(2 n^{2}-38\right)=\frac{1}{3} n\left(n^{2}-19\right) \end{aligned}$	M1 A2 M1 A1 A1 [6]	Separate into 3 sums -1 each error Valid attempt to factorise (with n as a factor) Correct expression c.a.o. Complete, convincing argument
6	$\begin{aligned} & \text { When } n=1, \frac{n(n+1)(n+2)}{3}=2, \\ & \text { so true for } n=1 \\ & \text { Assume true for } n=k \\ & 2+6+\ldots . .+k(k+1)=\frac{k(k+1)(k+2)}{3} \\ & \Rightarrow 2+6+\ldots . .+(k+1)(k+2) \\ & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\ & =\frac{1}{3}(k+1)(k+2)(k+3) \\ & =\frac{(k+1)((k+1)+1)((k+1)+2)}{3} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$ it is true for $n=k+1$. Since it is true for $n=1$, it is true for $n=1,2,3$ and so true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Assume true for k Add $(k+1)$ th term to both sides c.a.o. with correct simplification Dependent on A1 and previous E1 Dependent on B1 and previous E1

Mathematics (MEI)

Advanced Subsidiary GCE 4755

Mark Scheme for June 2010

Qu	Answer	Mark	Comment
Section A			
1	$\begin{aligned} & 4 x^{2}-16 x+C \equiv A\left(x^{2}+2 B x+B^{2}\right)+2 \\ & \Leftrightarrow 4 x^{2}-16 x+C \equiv A x^{2}+2 A B x+A B^{2}+2 \\ & \Leftrightarrow A=4, B=-2, C=18 \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A2, } 1 \\ {[4]} \end{gathered}$	$A=4$ Attempt to expand RHS or other valid method (may be implied) 1 mark each for B and C , c.a.o.
2(i) 2(ii)	$\begin{aligned} & 2 x-5 y=9 \\ & 3 x+7 y=-1 \\ & \mathbf{M}^{-1}=\frac{1}{29}\left(\begin{array}{cc} 7 & 5 \\ -3 & 2 \end{array}\right) \end{aligned}$ $\begin{aligned} & \frac{1}{29}\left(\begin{array}{cc} 7 & 5 \\ -3 & 2 \end{array}\right)\binom{9}{-1}=\frac{1}{29}\binom{58}{-29} \\ & \Rightarrow x=2, y=-1 \end{aligned}$	B1 B1 [2] M1 A1 [2] M1 A1(ft) [2]	Divide by determinant c.a.o. Pre-multiply by their inverse For both
3	$\begin{aligned} & z=1-2 \mathrm{j} \\ & 1+2 \mathrm{j}+1-2 \mathrm{j}+\alpha=\frac{1}{2} \\ & \Rightarrow \alpha=-\frac{3}{2} \\ & \frac{-k}{2}=-\frac{3}{2}(1-2 \mathrm{j})(1+2 \mathrm{j})=-\frac{15}{2} \\ & k=15 \\ & \text { OR } \\ & (z-(1+2 \mathrm{j}))(z-(1-2 \mathrm{j}))=z^{2}-2 z+5 \\ & 2 z^{3}-z^{2}+4 z+k=\left(z^{2}-2 z+5\right)(2 z+3) \\ & \alpha=\frac{-3}{2} \\ & k=15 \end{aligned}$	B1 M1 A1 M1 A1(ft) A1 [6] M1 A1 M1 A1(ft) A1 [6]	Valid attempt to use sum of roots, or other valid method c.a.o. Valid attempt to use product of roots, or other valid method Correct equation - can be implied c.a.o. Multiplying correct factors Correct quadratic, c.a.o. Attempt to find linear factor c.a.o.

6(i)	$u_{2}=\frac{2}{1+2}=\frac{2}{3}, u_{3}=\frac{\frac{2}{3}}{1+\frac{2}{3}}=\frac{2}{5}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { [2] } \end{gathered}$	Use of inductive definition c.a.o.
6(ii)	When $n=1, \frac{2}{2 \times 1-1}=2$, so true for $n=1$	B1	Showing use of $u_{n}=\frac{2}{2 n-1}$
	Assume $u_{k}=\frac{2}{2 k-1}$	E1	Assuming true for k
	$\Rightarrow u_{k+1}=\frac{\frac{2}{2 k-1}}{1+\frac{2}{2 k-1}}$	M1	u_{k+1}
	$=\frac{\frac{2}{2 k-1}}{\frac{2 k-1+2}{2 k-1}}=\frac{2}{2 k+1}$	A1	Correct simplification
	$=\frac{2}{2(k+1)-1}$		
	But this is the given result with $k+1$ replacing k. Therefore if it is true for k it is also true for $k+1$.	E1	Dependent on A1 and previous E1
	integers.	E1 [6]	Dependent on B1 and previous E1

8(i)	$\begin{aligned} & \arg \alpha=\frac{\pi}{6},\|\alpha\|=2 \\ & \arg \beta=\frac{\pi}{2},\|\beta\|=3 \end{aligned}$	B1 B1 B1 [3]	Modulus of α Argument of α (allow 30°) Both modulus and argument of β (allow 90°)
8(ii)	$\alpha \beta=(\sqrt{3}+\mathrm{j}) 3 \mathrm{j}=-3+3 \sqrt{3} \mathrm{j}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Use of $\mathrm{j}^{2}=-1$ Correct
	$\begin{aligned} & \frac{\beta}{\alpha}=\frac{3 \mathrm{j}}{\sqrt{3}+\mathrm{j}}=\frac{3 \mathrm{j}(\sqrt{3}-\mathrm{j})}{(\sqrt{3}+\mathrm{j})(\sqrt{3}-\mathrm{j})} \\ & =\frac{3+3 \sqrt{3} \mathrm{j}}{4}=\frac{3}{4}+\frac{3 \sqrt{3} \mathrm{j}}{4} \end{aligned}$	M1 A1 A1 [5]	Correct use of conjugate of denominator Denominator $=4$ All correct
8(iii)	$\alpha /{ }_{x}$ $\begin{array}{r} I_{m} \\ 6 \\ 5 \end{array}$	M1 A1(ft) [2]	Argand diagram with at least one correct point Correct relative positions with appropriate labelling

Qu	Answer	Mark	Comment
Section B (continued)			
9(i)	P is a rotation through 90 degrees about the origin in a clockwise direction	B1	Rotation about origin 90 degrees clockwise, or equivalent
	Q is a stretch factor 2 parallel to the x-axis	B1	Stretch factor 2 Parallel to the x-axis
9(ii)	$\mathbf{Q P}=\left(\begin{array}{ll} 2 & 0 \\ 0 & 1 \end{array}\right)\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)=\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)$	$\begin{gathered} {[4]} \\ \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Correct order c.a.o.
9(iii)	$\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)\left(\begin{array}{lll} 2 & 1 & 3 \\ 0 & 2 & 1 \end{array}\right)=\left(\begin{array}{ccc} 0 & 4 & 2 \\ -2 & -1 & -3 \end{array}\right)$	M1	Pre-multiply by their $\mathbf{Q P}$ - may be implied
	$A^{\prime}=(0,-2), B^{\prime}=(4,-1), C^{\prime}=(2,-3)$	$\begin{array}{r} \mathrm{A} 1(\mathrm{ft}) \\ {[2]} \end{array}$	For all three points
9(iv)	$\mathbf{R}=\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \quad[2] \end{aligned}$	One for each correct column
9(v)	$\mathbf{R Q P}=\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & 2 \\ -1 & 0 \end{array}\right)=\left(\begin{array}{cc} 1 & 0 \\ 0 & -2 \end{array}\right)$	M1 A1(ft)	Multiplication of their matrices in correct order
	$(\mathbf{R Q P})^{-1}=\frac{-1}{2}\left(\begin{array}{cc} -2 & 0 \\ 0 & 1 \end{array}\right)$	M1 A1 [4]	Attempt to calculate inverse of their RQP c.a.o.

GCE

Mathematics

Advanced GCE
Unit 4725: Further Pure Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

(i) $\quad\left(\begin{array}{ll}7 & 9\end{array}\right)$	B1B1 2	Each element correct SC $(7,9)$ scores B1
(ii) (18)	B1* depB1 2	Obtain correct value Clearly given as a matrix
(iii) $\left(\begin{array}{cc}12 & -4 \\ 6 & -2\end{array}\right)$	M1	Obtain 2×2 matrix
	$\begin{array}{ll} \text { A1 } & \\ \text { A1 } & \mathbf{3} \\ 7 & \end{array}$	Obtain 2 correct elements Obtain other 2 correct elements

2. (i)	$-12+13 i$	B1B1 2		Real and imaginary parts correct
(ii)	$\frac{27}{37}-\frac{14}{37} \mathrm{i}$	B1		z^{*} seen
		M1		Multiply by w^{*}
		A1		Obtain correct real part or numerator
		A1	4	Obtain correct imaginary part or denom Sufficient working must be shown
		6		

3		B1* M1* A1* depA1 4 4	Establish result true for $n=1$ or 2 Use given result in recurrence relation in a relevant way Obtain $2^{n}+1$ correctly Specific statement of induction conclusion
4	Either	B1	Correct value for $\sum r$ stated or used
		M1	Express as sum of two series
	$\frac{a}{4} n^{2}(n+1)^{2}+\frac{b n}{2}(n+1)$	A1	Obtain correct unsimplified answer
		M1	Compare coefficients or substitute values for n
	$\begin{aligned} & a=4 \quad b=-4 \\ & \boldsymbol{O r} \end{aligned}$	A1 A16	Obtain correct answers
		M1	Use 2 values for n
	$a+b=04 a+b=12$	A1 A1	Obtain correct equations
	$a=4 \quad b=-4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 A1 } \end{aligned}$	Solve simultaneous equations Obtain correct answers
		6	
5		B1	$\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$ seen or implied
		M1	Use product inverse correctly
	$\mathbf{A}^{\text {a }}$	$\begin{aligned} & \text { Alcao } 3 \\ & \mathbf{n}^{2} \end{aligned}$	Obtain correct answer

(ii) $\alpha^{\prime} \beta^{\prime}=\alpha \beta+\frac{1}{\alpha \beta}+\frac{\beta}{\alpha}+\frac{\alpha}{\beta}$
$\frac{\beta}{\alpha}+\frac{\alpha}{\beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}$
$q=\frac{1}{3}$

B1 Correct expansion

M1 \quad Show how to deal with $\alpha^{2}+\beta^{2}$
A1 Obtain correct expression

M1 \quad Substitute their values into $\alpha^{\prime} \beta^{\prime}$
A1 5 Obtain correct answer a.e.f.
9

10 (i)
M1 Use correct denominator
A1 2 Obtain given answer correctly

(iii) $\frac{1}{2}$

B1ft $\quad S_{\infty}$ stated or start at $n+1$ as in (ii)
$\frac{1}{n+1}-\frac{1}{n+2}$
M1 $\quad S_{\infty}$ - their (ii) or show correct cancelling

$$
\frac{1}{(n+1)(n+2)}
$$

A1 3 Obtain given answer correctly

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

4	$\begin{aligned} & \frac{5 x}{x^{2}+4}<x \\ & \Rightarrow 5 x<x^{3}+4 x \\ & \Rightarrow 0<x^{3}-x \\ & \Rightarrow 0<x(x+1)(x-1) \\ & \Rightarrow x>1,-1<x<0 \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { A1 } \\ \text { A1 } \\ \text { M1dep* } \\ \text { A1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	Method attempted towards factorisation to find critical values $x=0$ $x=1, x=-1$ Valid method leading to required intervals, graphical or algebraic $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$ SC B2 No valid working seen $\begin{aligned} & x>1 \\ & -1<x<0 \end{aligned}$
5	$\begin{aligned} & \sum_{r=1}^{20} \frac{1}{(3 r-1)(3 r+2)} \equiv \frac{1}{3} \sum_{r=1}^{20}\left[\frac{1}{3 r-1}-\frac{1}{3 r+2}\right] \\ & =\frac{1}{3}\left[\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\ldots .+\left(\frac{1}{59}-\frac{1}{62}\right)\right] \\ & =\frac{1}{3}\left(\frac{1}{2}-\frac{1}{62}\right)=\frac{5}{31} \end{aligned}$	M1 A1 A1 M1 A1 [5]	Attempt to use identity - may be implied Correct use of $1 / 3$ seen Terms in full (at least first and last) Attempt at cancelling c.a.o.

Section B

7(i)	$(0,18)$	B1	
	$(-9,0),\left(\frac{8}{3}, 0\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	
7(ii)	$x=2, x=-2 \text { and } y=3$	B1 B1 B1 [3]	
7(iii)	Large positive $x, y \rightarrow 3^{+}$from above Large negative $x, y \rightarrow 3^{-}$from below (e.g. consider $x=100$, or convincing algebraic argument)	B1 B1 M1 [3]	Must show evidence of working
7(iv)		B1 B1 B1 [3]	3 branches correct Asymptotes correct and labelled Intercepts correct and labelled

GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4755: Further Concepts for Advanced Mathematics

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0, 1
SC	Special case
Λ	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics (MEI) Pure strand

a Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c The following types of marks are available.

M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance
1	(i)	$\mathbf{A B}=\left(\begin{array}{lll}2 & -1 & 1 \\ 0 & p & -4\end{array}\right)\left(\begin{array}{ll}0 & q \\ 2 & -2 \\ 1 & -3\end{array}\right)=\left(\begin{array}{cc}-1 & 2 q-1 \\ 2 p-4 & -2 p+12\end{array}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \\ & {[3]} \end{aligned}$	Attempt to multiply in correct order Correct and simplified $\quad-1$ each error
1	(ii)	$\mathbf{B A}=\left(\begin{array}{ll} 0 & q \\ 2 & -2 \\ 1 & -3 \end{array}\right)\left(\begin{array}{lll} 2 & -1 & 1 \\ 0 & p & -4 \end{array}\right)=\left(\begin{array}{lll} * & * & * \\ * & * & * \\ * & * & * \end{array}\right)$ $\mathbf{B A} \neq \mathbf{A B}$ hence not commutative	M1 A1 [2]	Valid method to compare products Reason for conclusion stated
2		$2 x^{3}-3 \equiv(x+3)\left(A x^{2}+B x+C\right)+D$ $B=-6, C=18, D=-57$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A3 } \\ & {[5]} \end{aligned}$	$A=2$ Evidence of comparing coefficients or other valid method (may be implied) 1 mark each for B, C and D , c.a.o.
3		$\begin{aligned} & 6^{3}-10 \times 6^{2}+37 \times 6+p=0 \\ & \Rightarrow p=-78 \\ & z^{3}-10 z^{2}+37 z-78=(z-6)\left(z^{2}-4 z+13\right) \\ & z=\frac{4 \pm \sqrt{16-52}}{2}=2 \pm 3 \mathrm{j} \end{aligned}$ So other roots are $2+3 \mathrm{j}$ and $2-3 \mathrm{j}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[6]} \\ & \hline \end{aligned}$	Substituting in 6, or other valid method cao Valid attempt to factorise Correct quadratic factor Valid method for solution of their 3 term quadratic One mark for both cao

Question		Answer	Marks	Guidance
6		$\begin{aligned} & \text { When } n=1, \sum_{r=1}^{n} r 3^{3^{r-1}}=1 \times 3^{0}=1 \\ & \text { and } \frac{1}{4}\left[3^{n}(2 n-1)+1\right]=\frac{1}{4}[3 \times(2-1)+1]=1, \text { so true for } n=1 \\ & \text { Assume } \sum_{r=1}^{k} r 3^{r-1}=\frac{1}{4}\left[3^{k}(2 k-1)+1\right] \\ & \sum_{r=1}^{k+1} r 3^{r-1}=\frac{1}{4}\left[3^{k}(2 k-1)+1\right]+(k+1) 3^{k+1-1} \\ & =\frac{1}{4}\left[3^{k}(2 k-1)+1+4(k+1) 3^{k}\right] \\ & =\frac{1}{4}\left[3^{k}(2 k-1+4(k+1))+1\right] \\ & =\frac{1}{4}\left[3^{k}(6 k+3)+1\right] \\ & =\frac{1}{4}\left[3^{k+1}(2 k+1)+1\right] \\ & =\frac{1}{4}\left[3^{k+1}(2(k+1)-1)+1\right] \end{aligned}$ Therefore if true for $n=k$ it is also true for $n=k+1$. Since it is true for $k=1$, it is true for all positive integers.	B1 E1 M1* M1 dep* M1dep* A1 E1 E1 [8]	Assuming true for k Adding $(k+1)$ th term (incorrect expressions on LHS lose final E1) Attempt to obtain factor of $\frac{1}{4}$ For $\left[3^{k}(a k+b)+c\right] \quad c \neq 0$ Or target seen Dependent on A1 and previous E1 Dependent on B1 and previous E1
7	(i)	$\begin{aligned} & (-1,0),\left(\frac{1}{2}, 0\right) \\ & \left(0, \frac{1}{3}\right) \end{aligned}$	B1 B1 [2]	Both x-intercepts y-intercept
7	(ii)	$x=-\sqrt{3}, x=\sqrt{3}, y=2$	$\begin{gathered} \mathrm{B} 1, \mathrm{~B} 1, \mathrm{~B} 1^{*} \\ {[3]} \\ \hline \end{gathered}$	

Question		Answer	Marks	Guidance
7	(iii)	Evidence of method needed e.g. evaluation for 'large' values or convincing algebraic argument (A)Large positive $x, y \rightarrow 2^{+}$so from above (B) Large negative $x, y \rightarrow 2^{-}$so from below	M1 A1 dep* A1 dep* [3]	Allow if $y=2$ indicated but not explicit in (ii) SC B1 dep* Correct (A) and (B) following M0
7	(iv)		B1 B1 B1 [3]	Correct asymptotes shown and labelled Correct central branch with intercepts labelled Correct shape. Allow asymptotes at $x= \pm 3$ and $y=k, k>0$. asymptotic behaviour shown with clear minimum in the LH branch.
7	(v)	$\begin{aligned} & (x+1)(2 x-1)=2\left(x^{2}-3\right) \\ & x=-5 \\ & x<-5 \end{aligned}$ or $-\sqrt{3}<x<\sqrt{3}$	M1 B1 B1 [3]	Finding where curve cuts $y=2$ (or valid solution of an inequality)

Question		Answer	Marks	Guidance
8	(i)		$\begin{aligned} & \text { B3 } \\ & {[3]} \end{aligned}$	Circle, B1; centre 4, B1; radius 3 with evidence of scale B1;
8	(ii)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Tangent OA Tangent OB
8	(iii)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	Region outside their circle indicated Correct region shown
8	(iv)	$\begin{aligned} & \alpha=\arcsin \frac{3}{4} \\ & \alpha=0.848 \\ & \beta=-0.848 \end{aligned}$	M1 A2 ft	Valid method ft their tangents if circle centred on any axis One for each; accept 48.6° and -48.6° A1 max if $\alpha<\beta$
			[3]	
9	(i)	\mathbf{R} represents a rotation through 90° \mathbf{R}^{4} represents 4 successive rotations through 90°, making 360°, which is a full turn, which is equivalent to the identity	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { E1 } \\ & \text { [3] } \end{aligned}$	4 successive rotations Interpretation of \mathbf{R}^{4} and \mathbf{I} required
9	(ii)	\mathbf{R}^{-1} represents a rotation of 90° clockwise about the origin. $\mathbf{R}^{-1}=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$	B1 B1 [2]	Rotation, angle, centre and sense

Question		Answer	Marks	Guidance
9	(iii)	$\mathbf{S}=\left(\begin{array}{cc}\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	B2 [2]	One mark for each correct column (allow 3sf)
9	(iv)	$\begin{aligned} & m=3 \\ & n=2 \\ & \mathbf{S}^{3}=\mathbf{R}^{2} \text { because both represent a rotation through } 180^{\circ} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & {[2]} \\ & \hline \end{aligned}$	$m=3$ and $n=2$
9	(v)	$\mathbf{R S}=\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cc} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{array}\right)=\left(\begin{array}{cc} -\frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{array}\right)$ $\mathbf{R S}=\mathbf{S R}$ because RS represents a 60° rotation anticlockwise about the origin followed by a 90° rotation anticlockwise about the origin, making a total rotation of 150° anticlockwise about the origin. SR represents these two rotations in the opposite order, but the net effect is still a rotation of 150° anticlockwise about the origin.	M1 A1ft E1 [3]	ft their \mathbf{S} -1 each error Convincing explanation, correct, no ft

Question		Answer	Marks	Guidance
1	(i)	Transformation A is a reflection in the y-axis. Transformation B is a rotation through 90° clockwise about the origin.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & {[2]} \\ & \hline \end{aligned}$	
1	(ii)	$\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	M1 A1 [2]	Attempt to multiply in correct order cao
1	(iii)	Reflection in the line $y=x$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	
2	(i)	$\begin{aligned} & \left\|z_{1}\right\|=\sqrt{3^{2}+(3 \sqrt{3})^{2}}=6 \\ & \arg \left(z_{1}\right)=\arctan \frac{3 \sqrt{3}}{3}=\frac{\pi}{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \\ & \hline \end{aligned}$	Use of Pythagoras cao cao
2	(ii)	$z_{2}=\frac{5}{2}+\frac{5 \sqrt{3}}{2} \mathrm{j}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	May be implied cao
2	(iii)	Because z_{1} and z_{2} have the same argument	$\begin{aligned} & \text { E1 } \\ & {[1]} \end{aligned}$	Consistent with (i)
3		$\alpha+\frac{\alpha}{6}+\alpha-7=\frac{-8}{3} \Rightarrow \alpha=2$ Other roots are -5 and $\frac{1}{3}$ Product of roots $=\frac{-q}{3}=\frac{-10}{3} \Rightarrow q=10$ Sum of products in pairs $=\frac{p}{3}=-11 \Rightarrow p=-33$	M1 A1 M1 A1 M1 A1	Attempt to use sum of roots Value of α (cao) Attempt to use product of roots $q=10 \text { c.a.o. }$ Attempt to use sum of products of roots in pairs $p=-33$ cao

Question		Answer	Marks	Guidance
		OR, for final four marks $\begin{aligned} & (x-2)(x+5)(3 x-1) \\ & =3 x^{3}+8 x^{2}-33 x+10 \\ & \Rightarrow p=-33 \text { and } q=10 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Express as product of factors Expanding $\begin{aligned} & p=-33 \text { cao } \\ & q=10 \text { cao } \end{aligned}$
4		$\begin{aligned} & \frac{3}{x-4}>1 \Rightarrow 3(x-4)>(x-4)^{2} \\ & \Rightarrow 0>x^{2}-11 x+28 \\ & \Rightarrow 0>(x-4)(x-7) \\ & \Rightarrow 4<x<7 \end{aligned}$ OR $\frac{3}{x-4}-1>0 \Rightarrow \frac{7-x}{x-4}>0$ Consideration of graph sketch or table of values/signs $\Rightarrow 4<x<7$ OR $3=x-4 \Rightarrow x=7$ (each side equal) $x=4$ (asymptote) Critical values at $x=7$ and $x=4$ Consideration of graph sketch or table of values/signs $4<x<7$ OR Consider inequalities arising from both $x<4$ and $x>4$ Solving appropriate inequalities to their $x>7$ and $x<7$ $4<x<7$	$\begin{gathered} \text { M1* } \\ \\ \text { M1dep* } \\ \text { B2 } \\ \text { M1* } \\ \\ \text { M1dep* } \\ \text { B2 } \\ \\ \\ \text { M1* } \\ \text { M1dep* } \\ \text { B2 } \\ \text { M1* } \\ \text { M1dep* } \\ \text { B2 } \\ \text { [4] } \\ \hline \end{gathered}$	Multiply through by $(x-4)^{2}$ Factorise quadratic One each for $4<x$ and $x<7$ Obtain single fraction >0 One each for $4<x$ and $x<7$ Identification of critical values at $x=7$ and $x=4$ One each for $4<x$ and $x<7$ One for each $4<x$ and $x<7$, and no other solutions

Question		Answer	Marks	Guidance
5	(i)	$\frac{1}{2 r+1}-\frac{1}{2 r+3}=\frac{2 r+3-(2 r+1)}{(2 r+1)(2 r+3)}=\frac{2}{(2 r+1)(2 r+3)}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ {[2]} \end{gathered}$	Attempt at common denominator
5	(ii)	$\begin{aligned} & \sum_{r=1}^{30} \frac{1}{(2 r+1)(2 r+3)}=\frac{1}{2} \sum_{r=1}^{30}\left[\frac{1}{2 r+1}-\frac{1}{2 r+3}\right] \\ & =\frac{1}{2}\left[\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\ldots+\left(\frac{1}{59}-\frac{1}{61}\right)+\left(\frac{1}{61}-\frac{1}{63}\right)\right] \\ & =\frac{1}{2}\left(\frac{1}{3}-\frac{1}{63}\right)=\frac{10}{63} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Use of (i); do not penalise missing factor of $\frac{1}{2}$ Sufficient terms to show pattern Cancelling terms Factor $1 / 2$ used oe cao
6	(i)	$a_{2}=3 \times 2=6, a_{3}=3 \times 7=21$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	cao
6	(ii)	When $n=1, \frac{5 \times 3^{0}-3}{2}=1$, so true for $n=1$ Assume $a_{k}=\frac{5 \times 3^{k-1}-3}{2}$ $\begin{aligned} & \Rightarrow a_{k+1}=3\left(\frac{5 \times 3^{k-1}-3}{2}+1\right) \\ & =\frac{5 \times 3^{k}-9}{2}+3=\frac{5 \times 3^{k}-9+6}{2} \\ & =\frac{5 \times 3^{k}-3}{2}=\frac{5 \times 3^{(k+1)-1}-3}{2} \end{aligned}$ But this is the given result with $k+1$ replacing k. Therefore if it is true for $n=k$ it is also true for $n=k+1$. Since it is true for $n=1$, it is true for all positive integers.	B1 E1 M1 A1 E1 E1 [6]	Showing use of $a_{n}=\frac{5 \times 3^{n-1}-3}{2}$ Assuming true for $n=k$ a_{k+1}, using a_{k} and attempting to simplify Correct simplification to left hand expression. May be identified with a 'target' expression using $n=k+1$ Dependent on A1 and previous E1 Dependent on B1 and previous E1

Question		Answer	Marks	Guidance
7	(i)	$(-5,0),(5,0),\left(0, \frac{25}{24}\right)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	-1 for each additional point
7	(ii)	$x=3, x=-4, x=-\frac{2}{3} \text { and } y=0$	$\begin{aligned} & \text { B1 } \\ & {[4]} \\ & \hline \end{aligned}$	
7	(iii)	Some evidence of method needed e.g. substitute in 'large' values or argument involving signs Large positive $x, y \rightarrow 0^{+}$ Large negative $x, y \rightarrow 0^{-}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & {[3]} \end{aligned}$	
7	(iv)		B1* B1dep* B1 B1	4 branches correct Asymptotic approaches clearly shown Vertical asymptotes correct and labelled Intercepts correct and labelled

Question		Answer	Marks	Guidance
8	(i)	$\begin{aligned} & 3(1+3 \mathrm{j})^{3}-2(1+3 \mathrm{j})^{2}+22(1+3 \mathrm{j})+40 \\ & =3(-26-18 \mathrm{j})-2(-8+6 \mathrm{j})+22(1+3 \mathrm{j})+40 \\ & =(-78+16+22+40)+(-54-12+66) \mathrm{j} \\ & =0 \end{aligned}$ So $z=1+3 j$ is a root	M1 A1 A1 A1 [4]	Substitute $z=1+3 \mathrm{j}$ into cubic $(1+3 \mathrm{j})^{2}=-8+6 \mathrm{j},(1+3 \mathrm{j})^{3}=-26-18 \mathrm{j}$ Simplification (correct) to show that this comes to 0 and so $z=1+3 \mathrm{j}$ is a root
8	(ii)	All cubics have 3 roots. As the coefficients are real, the complex conjugate is also a root. This leaves the third root, which must therefore be real.	E1 [1]	Convincing explanation
8	(iii)	$\begin{aligned} & 1-3 \mathrm{j} \text { must also be a root } \\ & \text { Sum of roots }=-\frac{-2}{3}=\frac{2}{3} \text { OR product of roots }=-\frac{40}{3} \\ & \text { OR } \sum \alpha \beta=\frac{22}{3} \\ & (1+3 \mathrm{j})+(1-3 \mathrm{j})+\alpha=\frac{2}{3} \text { OR }(1+3 j)(1-3 j) \alpha=-\frac{40}{3} \\ & \text { OR }(1-3 j)(1+3 j)+(1-3 j) \alpha+(1+3 j) \alpha=\frac{22}{3} \\ & \Rightarrow \alpha=\frac{-4}{3} \text { is the real root } \end{aligned}$	B1 M1 A2,1,0 A1	Attempt to use one of $\sum \alpha, \alpha \beta \gamma, \sum \alpha \beta$ Correct equation Cao
		OR $1-3 \mathrm{j}$ must also be a root $(z-1+3 \mathrm{j})(z-1-3 \mathrm{j})=z^{2}-2 z+10$ $3 z^{3}-2 z^{2}+22 z+40 \equiv\left(z^{2}-2 z+10\right)(3 z+4)=0$ $\Rightarrow z=\frac{-4}{3}$ is the real root	B1 M1 A1 A1 A1 [5]	Use of factors Correct quadratic factor Correct linear factor (by inspection or division) Cao

Question		Answer	Marks	Guidance
9	(i)	$\begin{aligned} & p=7 \times(-4)+(-1) \times(-19)+(-1) \times(-9)=0 \\ & q=2 \times 11+1 \times(-7)+k \times(2-k) \\ & \Rightarrow q=15+2 k-k^{2} \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	AG must see correct working AG Correct working
9	(ii)	$\begin{aligned} & \mathbf{A B}=\left(\begin{array}{ccc} 79 & 0 & 0 \\ 0 & 79 & 0 \\ 0 & 0 & 79 \end{array}\right) \\ & \mathbf{A}^{-1}=\frac{1}{79}\left(\begin{array}{ccc} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{array}\right) \end{aligned}$	B2 M1 B1 A1 [5]	-1 each error Use of B $\frac{1}{79}$ Correct inverse
9	(iii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=\frac{1}{79}\left(\begin{array}{ccc} -4 & -5 & 11 \\ -19 & -4 & -7 \\ -9 & -31 & 5 \end{array}\right)\left(\begin{array}{c} 14 \\ -23 \\ 9 \end{array}\right)=\left(\begin{array}{c} 2 \\ -3 \\ 8 \end{array}\right) \\ & \Rightarrow x=2, y=-3, z=8 \end{aligned}$	M1 A1 A1 A1 [4]	Attempt to pre-multiply by their \mathbf{A}^{-1} SC A2 for x, y, z unspecified sSC B1 for A^{-1} not used or incorrectly placed.

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4755: Further Concepts for Advanced Mathematics

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
\checkmark and \times	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Independent mark awarded 0, 1
B0, B1	Special case
SC	Omission sign
^ MR	Misread
Highlighting	Meaning
Other abbreviations in	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Subject-specific Marking Instructions

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B
Mark for a correct result or statement independent of Method marks.

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
$\mathrm{f} \quad$ Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work
If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer A is a reflection in the line $y=x$ B is a two way stretch, (scale) factor 2 in the x-direction and (scale) factor 3 in the y-direction	Marks B1 B1 B1 [3]	Guidance	
1	(i)			Stretch, with attempt at details. Details correct.	
1	(ii)	$\mathbf{B A}=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right)$	M1 A1 [2]	Attempt to multiply in correct order	
2		$\begin{aligned} & \frac{z}{z^{*}}=\frac{a+b \mathrm{j}}{a-b \mathrm{j}}=\frac{(a+b \mathrm{j})^{2}}{(a-b \mathrm{j})(a+b \mathrm{j})} \\ & =\frac{a^{2}+2 a b \mathrm{j}-b^{2}}{a^{2}+b^{2}} \\ & \Rightarrow \operatorname{Re}\left(\frac{z}{z^{*}}\right)=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \text { and } \operatorname{Im}\left(\frac{z}{z^{*}}\right)=\frac{2 a b}{a^{2}+b^{2}} \end{aligned}$	M1 M1 A1 A1 [4]	Multiply top and bottom by $a+b j$ and attempt to simplify Using $j^{2}=-1$ cao correctly labelled cao correctly labelled	
3		$z=2-\mathrm{j}$ is also a root $\alpha \beta \gamma=\frac{15}{2}$, or $\alpha \beta+\beta \gamma+\gamma \alpha=\frac{22}{2}$, with $\alpha \beta=(2+j)(2-j)=5$ used. $\begin{aligned} & \text { OR }(a z+b)(z-2+j)(z-2-j)=2 z^{3}+p z^{2}+22 z-15 \\ & \Rightarrow(a z+b)\left(z^{2}-4 z+5\right)=2 z^{3}+p z^{2}+22 z-15 \end{aligned}$ OR $2(2+11 j)+p(3+4 j)+22(2+j)-15=0$ Complete valid method for then obtaining the other unknown. $\text { real root }=\frac{3}{2}, p=-11$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 A1 } \\ {[6]} \end{gathered}$	Stated, not just used. Attempt to use roots in a relationship Correct equation obtained for γ. Attempt use of complex factors. Correct complex factors; one pair of factors correctly multiplied Substitution correct equation Root relation, obtaining linear factor, equating real and imaginary parts FT one value	Allow incorrect signs Allow incorrect signs (z^{+}...) Allow an incorrect sign Signs correct

Question		Answer	Marks	Guidance	
5	(i)	$\begin{aligned} & \sum_{r=1}^{100} \frac{1}{(5+3 r)(2+3 r)}=k \sum_{r=1}^{100}\left[\frac{1}{2+3 r}-\frac{1}{5+3 r}\right] \\ & =k\left[\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+\ldots\right. \\ & \left.+\left(\frac{1}{302}-\frac{1}{305}\right)\right] \\ & =k\left(\frac{1}{5}-\frac{1}{305}\right) \\ & =\frac{20}{305}=\frac{4}{61}, \text { oe } \end{aligned}$	M1 M1 A1 M1 A1 [5]	Write out terms (at least first and last terms in full) Cancelling inner terms cao	
	(ii)	$\frac{1}{15}$	B1 [1]		
6		When $n=1,(-1)^{0} \frac{1 \times 2}{2}=1$ and $1^{2}=1$, so true for $n=1$ Assume true for $n=k$ $\begin{aligned} & \Rightarrow 1^{2}-2^{2}+3^{2}-\ldots . .+(-1)^{k-1} k^{2}=(-1)^{k-1} \frac{k(k+1)}{2} \\ & \Rightarrow 1^{2}-2^{2}+3^{2}-\ldots .+(-1)^{k-1} k^{2}+(-1)^{k+1-1}(k+1)^{2} \\ & =(-1)^{k-1} \frac{k(k+1)}{2}+(-1)^{k+1-1}(k+1)^{2} \\ & =(-1)^{k}\left[\frac{-k(k+1)}{2}+(k+1)^{2}\right] \\ & =(-1)^{k}(k+1)\left(\frac{-k}{2}+k+1\right) \end{aligned}$	B1 E1 M1* M1 Dep* A1	Assuming true result for some n. Adding $(k+1)$ th term to both sides. Attempt to factorise (at least one valid factor) Correct factorisation Accept $(-1)^{k \pm m}$ provided expression correct.	Condone series shown incomplete

Question		Answer	Marks	Guidance	
8	(ii)	Origin to centre of circle $=\sqrt{(-8)^{2}+15^{2}}=17$. Origin to centre of the circle ± 10 Point A is the point on the circle furthest from the origin. Since the radius of the circle is $10, \mathrm{OA}=27$. Point B is the point on the circle closest to the origin. Since the radius of the circle is $10, \mathrm{OB}=7$. Hence for z in the circle $7<\|z\|<27$	M1 M1 E1 [3]	Use of radius of circle Correct explanation for both	Allow centre at $\pm 8 \pm 15 j$ and FT
8	(iii)	P is the point where a line from the origin is a tangent to the circle giving the greatest argument $\theta,-\pi<\theta \leq \pi$ $\begin{aligned} & \|p\|=\sqrt{17^{2}-10^{2}}=\sqrt{189}=13.7 \text { (3 s.f.) } \\ & \arg p=\frac{\pi}{2}+\arcsin \frac{8}{17}+\arcsin \frac{10}{17} \\ & =2.69 \text { (3 s.f.) } \end{aligned}$	B1 B1 M1 A1 [4]	Correctly positioned on circle Accept $\sqrt{189}$ or $3 \sqrt{21}$ or 13.7 Attempt to calculate the correct angle. cao Accept 154°	Allow circles centred as in (ii) Correct circle only
9	(i)	$\begin{aligned} & (8 \times 4)-(7 \times 5)-(12 \times 1)=-15 \\ & \Rightarrow k=-\frac{1}{15} \end{aligned}$	M1 A1 [2]	Any valid method soi No working or wrong working SC B1	
9	(ii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\right)=-\frac{1}{15}\left(\begin{array}{ccc} 4 & 2 & 3 \\ 5 & 4 & 0 \\ 1 & -1 & 2 \end{array}\right)\left(\begin{array}{c} 14 \\ -25 \\ 3 \end{array}\right)=\left(\begin{array}{c} -1 \\ 2 \\ -3 \end{array}\right) \\ & x=-1, y=2, z=-3 \end{aligned}$	B1 M1 A2 [4]	Use of \mathbf{A}^{-1} in correct position(s) Attempt to multiply matrices to obtain column vector -1 each error	Condone missing k
9	(iii)	$(1 \times a)+(-8 \times-4)+(-21 \times 2)=0 \Rightarrow a=10$ $(-7 \times 5)+(5 \times 1)+(15 \times b)=0 \Rightarrow b=2$	M1 A1 [2]	Attempt to multiply $\mathbf{B B}^{-1}$ matrices to find a or b soi For both	

Question		Answer	Marks	Guidance	
1		$2 x\left(x^{2}-5\right) \equiv(x-2)\left(A x^{2}+B x+C\right)+D$ Comparing coefficients of $x^{3}, A=2$ Comparing coefficients of $x^{2}, B-2 A=0 \Rightarrow B=4$ Comparing coefficients of $x, C-2 B=-10 \Rightarrow C=-2$ Comparing constants, $D-2 C=0 \Rightarrow D=-4$	M1 B1 B1 B1 B1 [5]	Evidence of comparing coefficients, or multiplying out the RHS, or substituting. May be implied by $\mathrm{A}=2$ or $D=-4$ Unidentified, max 4 marks.	
2		$\begin{aligned} & z=\frac{3}{2} \text { is a root } \Rightarrow(2 z-3) \text { is a factor. } \\ & \Rightarrow(2 z-3)\left(z^{2}+b z+c\right)=\left(2 z^{3}+9 z^{2}+2 z-30\right) \end{aligned}$ Other roots when $z^{2}+6 z+10=0$ $\begin{aligned} & z=\frac{-6 \pm \sqrt{36-40}}{2} \\ & =-3+j \text { or }-3-j \end{aligned}$ $\begin{aligned} & \text { OR } \frac{3}{2}+\beta+\gamma=-\frac{9}{2}, \frac{3}{2} \beta \gamma=15, \text { or } \frac{3}{2} \beta+\beta \gamma+\frac{3}{2} \gamma=1 \\ & \beta+\gamma=-6, \beta \gamma=10 \\ & z^{2}+6 z+10=0 \\ & z=\frac{-6 \pm \sqrt{36-40}}{2} \\ & =-3+\mathrm{j} \text { or }-3-\mathrm{j} \end{aligned}$ or roots must be complex, so $a \pm b j, 2 a=-6,9+b^{2}=10$ $z=-3+j, z=-3-j$	M1 M1 M1 A1 M1 A1 M1 M1 M1 A1 M1 A1 M1 A1 [6]	Use of factor theorem, accept $2 z+3, z \pm \frac{3}{2}$ Attempt to factorise cubic to linear x quadratic Compare coefficients to find quadratic (or other valid complete method leading to a quadratic) Correct quadratic Use of quadratic formula (or other valid method) in their quadratic oe for both complex roots FT their 3-term quadratic provided roots are complex. Two root relations (may use α) leading to sum and product of unknown roots and quadratic equation which is correct Use of quadratic formula (or other valid method) in their quadratic oe For both complex roots FT their 3-term quadratic provided roots are complex. SCM0B1 if conjugates not justified	

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & -2-4 p=0 \\ & \Rightarrow p=-\frac{1}{2} \end{aligned}$	M1 B1 [2]	Any valid row x column leading to p	
3	(ii)	$\begin{aligned} & \left(\begin{array}{l} x \\ y \\ z \end{array}\left\|=\mathbf{N}^{-1}\right\| \begin{array}{c} -39 \\ 5 \\ 22 \end{array}\right) \\ & =\left(\begin{array}{ccc} 1 & 0 & 2 \\ 2 & 1 & 3 \\ \frac{-7}{2} & \frac{-1}{2} & -6 \end{array}\| \| \begin{array}{c} -39 \\ 5 \\ 22 \end{array}\right) \\ & =\left(\begin{array}{c} 5 \\ -7 \\ 2 \end{array}\right) \end{aligned}$	M1 M1 A1 A1 [4]	Attempt to use \mathbf{N}^{-1} Attempt to multiply matrices (implied by 3×1 result) One element correct All 3 correct. FT their p	Correct solution by means of simultaneous equations can earn full marks. M1 elimination of one unknown, M1 solution for one unknown A1 one correct, A1 all correct
4	(i)	$\begin{aligned} & z_{2}=5\left(\cos \frac{\pi}{4}+\mathrm{j} \sin \frac{\pi}{4}\right) \\ & =\frac{5 \sqrt{2}}{2}+\frac{5 \sqrt{2}}{2} \mathrm{j} \end{aligned}$	M1 A1 [2]	May be implied oe (exact numerical form)	

Question		Answer	Marks	Guidance	
4	(ii)	$\begin{aligned} & z_{1}+z_{2}=3+\frac{5 \sqrt{2}}{2}+\left(-2+\frac{5 \sqrt{2}}{2}\right) \mathrm{j}=6.54+1.54 \mathrm{j} \\ & z_{1}-z_{2}=3-\frac{5 \sqrt{2}}{2}+\left(-2-\frac{5 \sqrt{2}}{2}\right) \mathrm{j}=-0.54-5.54 \mathrm{j} \\ & z_{1}-z_{2} \end{aligned}$	M1 B3 [4]	Attempt to add and subtract z_{1} and their z_{2} - may be implied by Argand diagram For points cao, -1 each error - dotted lines not needed.	
5		$\begin{aligned} & \sum_{r=1}^{n} \frac{1}{(4 r-3)(4 r+1)}=\frac{1}{4} \sum_{r=1}^{n}\left[\frac{1}{4 r-3}-\frac{1}{4 r+1}\right] \\ & =\frac{1}{4}\left[\left(\frac{1}{1}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\ldots+\left(\frac{1}{4 n-3}-\frac{1}{4 n+1}\right)\right] \\ & =\frac{1}{4}\left[1-\frac{1}{4 n+1}\right] \\ & =\frac{1}{4}\left[\frac{4 n+1-1}{4 n+1}\right]=\frac{n}{4 n+1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	For splitting summation into two. Allow missing $1 / 4$ Write out terms (at least first and last terms in full) Allow missing $1 / 4$ Cancelling inner terms; SC insufficient working shown above,M1M0M1A1 (allow missing 1/4) Inclusion of $1 / 4$ justified Honestly obtained (AG)	

Question		Answer	Marks	Gu	
6		$\begin{aligned} & w=\frac{x}{3}+1 \Rightarrow 3(w-1)=x \\ & x^{3}-5 x^{2}+3 x-6=0 \\ & \Rightarrow(3(w-1))^{3}-5(3(w-1))^{2}+3(3(w-1))-6=0 \\ & \Rightarrow 27\left(w^{3}-3 w^{2}+3 w-1\right)-45\left(w^{2}-2 w+1\right)+9 w-15=0 \\ & \Rightarrow 27 w^{3}-126 w^{2}+180 w-87=0 \\ & \Rightarrow 9 w^{3}-42 w^{2}+60 w-29=0 \end{aligned}$ OR In original equation $\sum \alpha=5, \sum \alpha \beta=3, \alpha \beta \gamma=6$ New roots A, B, Г $\begin{aligned} & \sum \mathrm{A}=\frac{\sum \alpha}{3}+3, \sum \mathrm{AB}=\frac{\sum \alpha \beta}{9}+\frac{2}{3} \sum \alpha+3 \\ & \mathrm{AB} \Gamma=\frac{\alpha \beta \gamma}{27}+\frac{\sum \alpha \beta}{9}+\frac{\sum \alpha}{3}+1 \end{aligned}$ Fully correct equation	M1 A1 A3 A1 M1A1 M1 A3 A1 [7]	Substituting Correct FT $x=3 w+3,3 w \pm 1,-1$ each error cao all correct for A1 At least two relations attempted Correct -1 each error FT their 5,3,6 Cao, accept rational coefficients here	

Question		Answer	Marks	Guidance	
7	(i)	Vertical asymptotes at $x=-2$ and $x=\frac{1}{2}$ occur when $\begin{aligned} & (b x-1)(x+a)=0 \\ & \Rightarrow a=2 \text { and } b=2 \end{aligned}$ Horizontal asymptote at $y=\frac{3}{2}$ so when x gets very large, $\frac{c x^{2}}{(2 x-1)(x+2)} \rightarrow \frac{3}{2} \Rightarrow c=3$	M1 A1 A1 A1 [4]	Some evidence of valid reasoning - may be implied	
7	(ii)	Valid reasoning seen Large positive $x, y \rightarrow \frac{3}{2}$ from below Large negative $x, y \rightarrow \frac{3}{2}$ from above	M1 A1 B1 B1 [4]	Some evidence of method needed e.g. substitute in 'large' values with result Both approaches correct (correct b,c) LH branch correct RH branch correct Each one carefully drawn.	

Question		Answer	Marks	Guidance	
8	(i)	$\begin{aligned} & \sum_{r=1}^{n}[r(r-1)-1]=\sum_{r=1}^{n} r^{2}-\sum_{r=1}^{n} r-n \\ & =\frac{1}{6} n(n+1)(2 n+1)-\frac{1}{2} n(n+1)-n \\ & =\frac{1}{6} n[(n+1)(2 n+1)-3(n+1)-6] \\ & =\frac{1}{6} n\left[2 n^{2}-8\right] \\ & =\frac{1}{3} n\left[n^{2}-4\right] \\ & =\frac{1}{3} n(n+2)(n-2) \end{aligned}$	M1 M1 A1 M1 A1 [5]	Split into separate sums Use of at least one standard result (ignore $3^{\text {rd }}$ term) Correct Attempt to factorise. If more than two errors, M0 Correct with factor $\frac{1}{3} n$ oe Answer given	
8	(ii)	When $n=1$, $\begin{aligned} & \sum_{r=1}^{n}[r(r-1)-1]=(1 \times 0)-1=-1 \\ & \text { and } \frac{1}{3} n(n+2)(n-2)=\frac{1}{3} \times 1 \times 3 \times-1=-1 \end{aligned}$ So true for $n=1$ Assume true for $n=k$ $\begin{aligned} & \sum_{r=1}^{k}[r(r-1)-1]=\frac{1}{3} k(k+2)(k-2) \\ & \Rightarrow \sum_{r=1}^{k+1}[r(r-1)-1]=\frac{1}{3} k(k+2)(k-2)+(k+1) k-1 \\ & =\frac{1}{3} k^{3}+k^{2}-\frac{4}{3} k+k-1 \\ & =\frac{1}{3}\left(k^{3}+3 k^{2}-k-3\right) \end{aligned}$	B1 E1 M1*	Or "if true for $\mathrm{n}=\mathrm{k}$, then..." Add $(\mathrm{k}+1)$ th term to both sides	

Question		Answer	Marks	Guidance	
		$\begin{aligned} & =\frac{1}{3}(k+1)\left(k^{2}+2 k-3\right) \\ & =\frac{1}{3}(k+1)(k+3)(k-1) \\ & =\frac{1}{3}(k+1)((k+1)+2)((k+1)-2) \end{aligned}$ But this is the given result with $n=k+1$ replacing $n=k$. Therefore if the result is true for $n=k$, it is also true for $n=$ $k+1$. Since it is true for $n=1$, it is true for all positive integers, n.	M1dep A1 E1 E1 [7]	Attempt to factorise a cubic with 4 terms Or $=\frac{1}{3} n(n+2)(n-2)$ where $n=k+1$; or target seen Depends on A1 and first E1 Depends on B1 and second E1	
9	(i)	Q represents a rotation 90 degrees clockwise about the origin	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Angle, direction and centre	
9	(ii)	$\begin{aligned} & \left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{2}=\binom{-2}{2} \\ & \mathrm{P}=(-2,2) \end{aligned}$	M1 A1 [2]	Allow both marks for $\mathrm{P}(-2,2)$ www	
9	(iii)	$\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{-y}{y}$ l is the line $y=-x$	M1 A1 [2]	Or use of a minimum of two points Allow both marks for $y=-x$ www	
9	(iv)	$\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{-y}{y}=\binom{-6}{6}$ n is the line $y=6$	M1 B1 [2]	Use of a general point or two different points leading to $\begin{aligned} & \binom{-6}{6} \\ & y=6 ; \text { if seen alone M1B1 } \end{aligned}$	

Question		Answer $\operatorname{det} \mathbf{M}=0 \Rightarrow \mathbf{M}$ is singular (or 'no inverse'). The transformation is many to one.	Marks B1 E1 $[2]$	Guidance	
9	(v)			www Accept area collapses to 0 , or other equivalent statements	
9	(vi)	$\begin{aligned} & \mathbf{R}=\mathbf{Q} \mathbf{M}=\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)\left(\begin{array}{cc} 0 & -1 \\ 0 & 1 \end{array}\right)=\left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right) \\ & \left(\begin{array}{ll} 0 & 1 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{y}{y} \end{aligned}$ q is the line $y=x$	M1 A1 [2]	Attempt to multiply in correct order Or argue by rotation of the line $y=-x$ $y=x \quad$ SC B1 following M0	

Question		Answer	Marks	Guidance	
$\mathbf{1}$			$\sum_{\gamma=1}^{n} r(r-2)=\sum_{\gamma=1}^{n} r^{2}-2 \sum_{\gamma}^{n} r$ $=\frac{1}{6} n(n+1)(2 n+1)-n(n+1)$ $=\frac{1}{6} n(n+1)[(2 n+1)-6]$ $=\frac{1}{6} n(n+1)(2 n-5)$	A1,A1	1 mark for each part oe

Question		Answer	Marks	Guidance
3		$z=2-3 \mathrm{j}$ is also a root	B1	
		Either $\begin{aligned} & (z-(2+3 \mathrm{j}))(z-(2-3 \mathrm{j}))=((z-2)+3 \mathrm{j}))((z-2)-3 \mathrm{j}) \\ & =z^{2}-4 z+13 \\ & z^{4}-5 z^{3}+15 z^{2}-5 z-26=\left(z^{2}-4 z+13\right)\left(z^{2}-z-2\right) \\ & \left(z^{2}-z-2\right)=(z-2)(z+1) \end{aligned}$ So the other roots are 2 and -1	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \\ \text { A1,A1 } \\ {[7]} \end{gathered}$	Condone $(\mathrm{z}+2+3 \mathrm{j})(\mathrm{z}+2-3 \mathrm{j})$ Correct quadratic Valid method to find the other quadratic factor. Correct quadratic 1 mark for each root, cao
		$\begin{aligned} & 2+3 j+2-3 j+\gamma+\delta=5 \mathrm{oe} \\ & (2+3 j)(2-3 j) \gamma \delta=-26 \\ & \gamma \delta=-2 \\ & \Rightarrow 4+\gamma+\delta=5 \Rightarrow \gamma=1-\delta \\ & \text { and } 13 \gamma \delta=-26 \Rightarrow \gamma \delta=-2 \\ & \Rightarrow \delta(1-\delta)=-2 \Rightarrow \delta^{2}-\delta-2=0 \\ & \Rightarrow(\delta+1)(\delta-2)=0 \end{aligned}$ So the other roots are -1 and 2 .	B1 M1 M1 A1 A1,A1 [7]	Sum of roots with substitution of roots $2 \pm 3 j$ for α and β Attempt to obtain equation in $\gamma \delta$ using a root relation and $2 \pm 3 j$ Eliminating γ or δ leading to a quadratic equation Correct equation obtained 1 mark for each, cao If $2,-1$ guessed from $\gamma+\delta=1$ and $\gamma \delta=-2$ give A 1 A 1 for these equations and A1A1 for the roots. SC factor theorem used. M1 for substitution of $z=-1$ (or 2) or division by $(z+1)$ (or by $z-2$), A1 if zero obtained, B1 for the root stated to be -1 (or 2). For the other root, similarly but M1A1A1 Max [7/7] Answers only get M0M0, max [1/7]

	Question	Answer	Marks	Guidance
5	5	Either $\begin{aligned} & y=3 x-1 \Rightarrow x=\frac{y+1}{3} \\ & \Rightarrow 3\left(\frac{y+1}{3}\right)^{3}-9\left(\frac{y+1}{3}\right)^{2}+\left(\frac{y+1}{3}\right)-1=0 \end{aligned}$ Correct coefficients in cubic expression (may be fractions) $\Rightarrow y^{3}-6 y^{2}-12 y-14=0$	M1* M1dep* A1 A3ft A1 [7]	Change of variable, condone $\frac{y-1}{3}, \frac{y}{3} \pm 1$. Substitute into cubic expression Correct ft their substitution (-1 each error) cao. Must be an equation with integer coefficients
		Or $\begin{aligned} & \alpha+\beta+\gamma=\frac{9}{3}=3 \\ & \alpha \beta+\alpha \gamma+\beta \gamma=\frac{1}{3} \\ & \alpha \beta \gamma=\frac{1}{3} \end{aligned}$ Let new roots be k, l, m then $\begin{aligned} & k+l+m=3(\alpha+\beta+\gamma)-3=6 \\ & k l+k m+l m=9(\alpha \beta+\alpha \gamma+\beta \gamma)-6(\alpha+\beta+\gamma)+3=-12 \\ & k l m=27 \alpha \beta \gamma-9(\alpha \beta+\beta \gamma+\beta \gamma)+3(\alpha+\beta+\gamma)-1=14 \\ & \Rightarrow y^{3}-6 y^{2}-12 y-14=0 \end{aligned}$	M1 A1 M1 A3ft A1 [7]	All three root relations, condone incorrect signs All correct Using (3 $\alpha-1$) etc in $\sum k, \sum k l, k l m$, at least two attempted, and using $\sum \alpha, \sum \alpha \beta, \alpha \beta \gamma$ One each for $6,-12,14$, ft their $3, \frac{1}{3}, \frac{1}{3}$. cao. Must be an equation with integer coefficients

Question		Answer	Marks	Guidance
7	(i)	$\begin{aligned} & \left(0,-\frac{5}{6}\right) \\ & (\sqrt{5}, 0),(-\sqrt{5}, 0) \end{aligned}$	B1 B1 [2]	Allow for both $x=0$ and $y=-\frac{5}{6}$ seen (both) Allow $(\pm \sqrt{5}, 0)$ or for both $y=0$ and $x= \pm \sqrt{5}$ seen
7	(ii)	$\begin{aligned} & a=2 \\ & y=0 \\ & x=-3, x=2 \end{aligned}$	B1 B1 B1 [3]	Must be two equations
7	(iii)		B1 B1 B1 B1 [4]	Two outer branches correctly placed Inner branches correctly placed Correct asymptotes and intercepts labelled For good drawing. Dep all 3 marks above Look for a clear maximum point on the right-hand branch, (not really shown here). Condone turning points in $-\sqrt{5}<x<\frac{1}{2}, y<0$
	(iv)	$-3<x<-\sqrt{5}, \frac{1}{2}<x<2, x>\sqrt{5}$	B3 [3]	One mark for each. Strict inequalities. Allow 2.24 for $\sqrt{5}$ (if B3 then -1 if more than 3 inequalities)

	uesti	Answer	Marks	Guidance
9	(i)	$\begin{aligned} & \beta=(-1)(3 \alpha-1)+5 \alpha+(-1)(2 \alpha+1) \\ & =-3 \alpha+1+5 \alpha-2 \alpha-1=0 \end{aligned}$	M1 A1 [2]	multiply second row of \mathbf{A} with first column of \mathbf{B} Correct
9	(ii)	$\begin{aligned} & \gamma=(1)(3 \alpha-1)+15+(-1)(2 \alpha+1) \\ & =\alpha+13 \end{aligned}$	M1 A1 [2]	Attempt to multiply relevant row of \mathbf{A} with relevant column of B. Condone use of $\mathbf{B A}$ instead Correct
9	(iii)	When $\alpha=2, \gamma=15$ $\mathbf{A}^{-1}=\frac{1}{15}\left(\begin{array}{ccc} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{array}\right)$ \mathbf{A}^{-1} does not exist when $\alpha=-13$	M1 A1 B1ft [3]	Multiplication of \mathbf{B} by $\frac{1}{\text { their } \gamma},(\gamma \neq 1)$ using $\alpha=2$ in both Correct elements in matrix and correct γ. ft their $\gamma=0$. Condone " $\alpha \neq-13$ "
9	(iv)	$\begin{aligned} & \frac{1}{15}\left(\begin{array}{ccc} 5 & -8 & -1 \\ 5 & 1 & 2 \\ 5 & -5 & 5 \end{array}\right)\left(\begin{array}{c} 25 \\ 11 \\ -23 \end{array}\right)=\left(\begin{array}{l} x \\ y \\ z \end{array}\right) \\ & =\frac{1}{15}\left(\begin{array}{c} 60 \\ 90 \\ -45 \end{array}\right)=\left(\begin{array}{c} 4 \\ 6 \\ -3 \end{array}\right) \\ & \Rightarrow x=4, y=6, z=-3 \end{aligned}$	M1 B1 A3 [5]	Set-up of pre-multiplication by their $3 \times 3 \mathbf{A}^{-1}$, or by \mathbf{B} (using $\alpha=2$) $\left(\begin{array}{lll}60 & 90 & -45\end{array}\right)^{\prime}$ soi need not be fully evaluated cao A1 for each explicit identification of x, y, z in a vector or a list. (-1 unidentified) Answers only or solution by other method, M0A0

[^0]: \square

